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Abstract 
 

We interpret the often mentioned difference between Logsum and average utility in terms of Shannon’s (1948) 

information measure S, leading to a Path Aggregation THeorem (PATH). It states that, in transport networks 

where unique measures of the utility of multiple paths are required for demand model formulation purposes and 

the true path choice model is Multinomial Logit (MNL), constructs based on weighted averages of path 

characteristics derived from multipath assignments always underestimate the utility of multiple paths, a deficit 

exactly equal to S (corresponding to minus-one times entropy) if the weights are the path choice probabilities.  
 

We study the properties of this S measure of aggregation error, along with those arising from other types of 

averages of path characteristics, outlining some implications for demand estimation and project appraisal. 

Notably, the validity of the PATH does not depend on the specific contents of the representative utility 

functions (RUF) associated to paths, such as their mathematical form or their eventual inclusion of alternative-

generic constants (AGC). We show by simulation that averaging modes or sub-modes ― a frequent feature of 

traffic modeling studies ― can lead to important error in terms of level of traffic and welfare measurement. 
 

Concerning the mathematical form of the RUF, we recall that, after the publication of Abraham’s 1961 random 

utility model (RUM) of road path choice deriving the Probit specification based on the Gaussian error 

distribution (and another specification based on the Rectangular error distribution), French engineers used this 

seminal approach as justification of road path choice formulae then in current use and assigned the name 

“Abraham’s Law” to a particular standard one, effectively a “Logarithmic Logit” close to the logarithmic RUF 

carefully specified for Logit mode choice by Warner in 1962. For transit problems, the preference went to a 

linear RUF, as evidenced in Barbier’s casual binomial Probit application to bus and metro, published in 1966, 

which may have inspired the later generalizations by Domencich and McFadden. 
 

In view of many founders’ conscientiously crafted nonlinear Logit formulations, and more generally of the 

repeatedly demonstrated presence of nonlinearity in RUF path and mode specifications since their careful work 

50 years ago, we analyze the impact of such nonlinearity on S. This impact is tractable through a comparison of 

measures S2 and S1 associated with two path choice models differing only in RUF form, as determined by Box-

Cox transformations applied to their level-of-service (LOS) variables. We show that, although the difference 

between measures S2 and S1 may reach a minimum or a maximum with changes in LOS, the solution for such a 

turning point cannot be established analytically but requires numerical methods: the demonstrable impact on S 

of nonlinearity, or asymmetry of Logit curve response, is tractable, but only at non trivial computational cost. 
 

We point out that the path aggregation issue, whereby aggregation of paths by Logsums differs from 

aggregation of their characteristics by averages, is not limited to public transit (PT) projects with more or less 

“common” lines competing in dense urban transit networks (our particular Paris predicament motivating the 

analysis) but also arises in other modes whenever distinct itineraries or lines compete within a single mode. 

Concerning dense urban PT networks, we hypothesize that Logsums based on multiple path assignments 

treating all transit means (about 10 in our problem) as one modal network should, using Ockham’s razor, be 

simpler than the insertion of a layer of choice hierarchies among such urban means based on non nested 

specifications embodying assumptions on the identity of “higher” and “lower” means, the latter reasserting the 

multiple path access problems the hierarchies were designed to solve in the first place. Concerning road 

networks, the proper accounting of multiple path use to avoid Shannon aggregation error points to an 

abandonment of Wardrop’s equilibrium in favor of Logit choice. This completed shift should favor transit when 

it is the minority mode. 
 

Key-words: multipath assignment, aggregation of path characteristics, path aggregation, inclusive values, 

Multinomial Logit, Shannon’s measure of information, origins of Random Utility Models (RUM), 

Probit, Logarithmic Logit, Abraham’s Law of traffic assignment, Kirchhoff’s distribution, non 

linearity of Representative Utility Functions (RUF), Box-Cox transformations (BCT), French 

engineers, Claude Abraham, Stanley Warner, Michel Barbier, Robert Fogel, Daniel McFadden, 

Abraham-McFadden approach, EOLE, Paris RER E westerly extension, Public Transit (PT) 

assignment, transit hierarchies, SAMPERS, PRISM, CUBE Voyager, VISUM, NODUS. 
 

Journal of Economic Literature classification: B23, C49, R41. 
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1. The necessary aggregation of paths for transport demand model specification 

Passenger transport models that explain Dod,m, the quantity demanded by mode m between any origin 

o and destination d, require, for all relevant origin-destination (OD) pairs and modes (M), the 

construction of level-of-service indicators LOSod,m typically comprising at least the modal Cost or Fare 

Fod,m and Travel time Tod,m characteristics. Given that other variables ETC are also required to 

complete specifications, a summary formulation of such demand functions might well be: 
 

(0-A) , ,1 ,( ,..., , )od m m od od MD f LOS LOS ETC , m= 1, …, M; o, d = 1, …, Z. 
 

In the particular case of stochastic (random utility) mode choice models commonly treated as demand 

models, such as the Multinomial Logit (MNL) and Probit, these variables appear in “representative 

utility functions” (RUF) typically specified only in terms of own-mode LOS characteristics, such as: 
 

(0-B) , ,( , )od m m od mV f LOS ETC , m= 1, …, M; o, d = 1, …, Z. 
 

The construction of such LOS indicators resulting in unique values of modal trip characteristics poses 

problems of its own because, as a rule, multiple paths of varying “lengths” are in fact used between 

any given origin and destination: the actual multiplicity of paths has to be both modeled and 

adequately represented to obtain the unique LOS vector of element values for each OD pair and mode 

in question. The first task of assignment algorithms therefore consists in espousing traveler choices in 

networks consisting in sets of techniques
1
 or groups of small plants jointly used to simultaneously 

produce different (trip) outputs. Their second task is to derive the LOS elements from the results of 

such multiple path assignments where itineraries actually used differ with respect to those elements 

(time, fare, etc.): the question is then how to weigh, or aggregate, them. 
 

In this paper, we assume that the first task has been carried out to perfection and we concentrate on the 

second to discuss some current weighing practices and their implications for the specification and 

estimation of the demand functions and their consequent use in project appraisal. The immediate 

problem giving rise to this concern is for us the extension of a suburban train line westward from 

central Paris in an urban environment where other competing suburban train lines already exist along 

with many other transit options (metros, buses, tramways, etc.). In the presence of a significant 

density of transit alternatives, it is tempting for analysts to choose in the menu of transit assignment 

procedures offered by commercial computer packages the “average LOS” option to generate the 

transit indicators needed in the demand or mode choice model: we compare such “average” options 

with the “Logsum” also available from Logit path assignments in some transit assignment programs.  
 

We provide proof of a Path Aggregation THeorem (PATH) stating that, in transport networks where 

unique measures of the utility of multiple paths are required for demand model formulation purposes, 

constructs based on weighted averages of network path characteristics derived from multipath 

assignments always underestimate the utility of multiple paths by an amount exactly equal to 

Shannon's (1948) measure of information if the true path choice model is Multinomial Logit. The 

aggregation of path characteristics therefore differs from the aggregation of paths in measurable ways, 

a number of which are also considered in passing. 
 

We study the properties of this measure of aggregation error. First, the issue of proper service 

aggregation is not limited to public transit projects with closely competing more or less “common” 

lines in dense urban networks (our particular Paris predicament): it also arises in other modes 

whenever distinct lines compete within a single mode, and even in freight assignments very briefly 

alluded to. Notably, the validity of the PATH does not depend on the mathematical form of the path 

utility functions or on the identification of a common path constant in assignment models. 

                                                 
1
 The application of this Hicksian terminology to transport networks was proposed by Åke Andersson at the International 

Symposium on Travel Supply Models, Montreal, November 17-19, 1977. 
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2. Does the aggregation of paths differ from that of their characteristics? 

2.1 The Logit context and three average constructs of path characteristics 

To establish the structural properties of various path weighing methods, we provisionally neglect all 

observational subscripts ― to be reintroduced in the next section where individual observations need 

to be identified ― and reinterpret the remaining running index as applying to paths instead of modes. 
 

If the choice function among path alternatives i (i = 1, …, M) is assumed to be MNL, namely: 
 

(1-A) 
1

exp( ) / exp( )
M

i i ii
p V V


  , 

(1-B) 
1

log ln exp( )
M

i i ii
p V V


   , 

 

where the Logsum or Inclusive value term derived by Williams (1977) or McFadden (1978) is easily 

recognizable. And we wish to consider three ways of aggregating itinerary use by performing a 

calculation of mean path utility. The first two are readily found in most assignment program menus:  
 

(1-C) p i ii
V p V   [probabilistic mean] 

(1-D) a i ii
V m V   [arithmetic mean] 

where, by convention
2
 : 

 the pi denote shares or choice probabilities of the M paths (or itineraries) used ; 
 

 the mi are all equal to 1/M ;  
 

 the Vi denote, as in (0-B), the representative utility functions (RUF) of the paths. 
 

The third construct, included here for good measure, is inspired by prospect theory which introduces a 

rupture or “twisting” in the evaluation of choice probabilities, in this case: 
 

(1-E) 
1

* * *

1 1 1

M k k

pp i i k

k i i

V p p V

 


  

    
      

     
    [prospect power mean] 

where :  
 

 starred values of probabilities (p*1, ..., p*i, …, p*M) and of RUF 
*

kV  signify that the latter are ordered in 

increasing fashion. And we imagine, in this hypothetical case of a mean construct incorporating an attitude 

towards path utility, that 1  stands for instance for the risk of agoraphilia (the fear of little used 

itineraries), 1  for the risk of agoraphobia (the fear of heavily used itineraries), and 1  for a neutral 

attitude towards itinerary size or inherent attractiveness: in this latter case, (1-E) collapses back to (1-C); 
 

 the simple power transformation p  is chosen among probability transforming functions that maintain the 

capacity of the distribution. Stott (2006, Table 3) lists seven current examples of such functions, obviously 

excluding from his ménagerie the Box & Cox (1964) power transformation applied below to LOS variables 

but including in it the convoluted inverted S-shape animal used by Tversky & Kahneman (1992), 

 
1

(1 )p p p


    : all seven do indeed guarantee that transformed probabilities sum to unity.  

 

Our retained prospect power formulation of a mean (1-E) is directly borrowed from a model of Air 

France flight choice between Charles de Gaulle airport and two of the three airports serving London 

where the author (Lapparent, 2004, 2010) applied the simple power “twist” to Travel time *

kT , a 

variable included in the iV  functions of different flights, not to those complete functions themselves. 

Expressing an attitude towards risk of realization of a RUF instead of a variable, formulation (1-E) is 

therefore speculative in the sense that it has never been applied as such. 

                                                 
2
 The use of these weighted averages appears to be based on intuition or on long-established practice reflected in computer 

packages: we are unaware of any derivation of (1-A) from utility that would mandate (1-C) or (1-D) as path aggregators. 
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2.2 Underestimation of the value of paths by constructs averaging their characteristics 

We are now in a position to ask how the aggregation of paths differs from that of their characteristics 

by comparing the Logsum to various weighted averages. Generally speaking, consider from (1-B): 
 

(2-A) ln ln Vi

i i i
V p e     , 

 

and, after multiplying all terms by weights 
iw  normalized to sum to unity, sum over all paths to obtain 

the weighted mean 
w i ii

V wV , and simply derive: 
 

(2-B) ln( ) ln[ ]jV

w i i i ii i j
V wV w p e     , 

 

from which different special cases will follow, depending on the nature of the weights 1ii
w  . For 

instance, if the weights are the probabilities themselves as in (1-C), we obtain: 
 

(2-C) ln exp( ) ln( )p i i ii i
V V p p     

 

which can be stated formally as the path aggregation theorem (PATH): 
 

In transport networks where unique measures of the utility of multiple paths are required for demand 

model formulation purposes, constructs based on probability-weighted averages of network path 

characteristics derived from multipath assignments always underestimate the utility of multiple paths by 

an amount equal to Shannon's (1948) measure of information if the true path choice model is 

Multinomial Logit. 
 

And we recall for comparison Shannon’s own formulation and comment (op. cit., p. 11): 
 

«Quantities of the form 
i iH=- p ln p  play a central role in information theory as measures of 

information, choice, uncertainty. The form of H will be recognized as that of entropy in certain 

formulations of statistical mechanics where pi is the probability of a system being in cell i of its phase 

space. H is then, for example, the H in Boltzmann’s famous H theorem. We shall call 
i iH=- p ln p  

the entropy of the set of probabilities p1, …, pn.»  
 

Like the entropy measure, the measure ln( )i ii
S p p   is null if all pi except one are zero ― but this 

possibility is excluded by the MNL, except if all utilities except one are minus infinity. Otherwise, the 

properties of the measure of information S (or minus-one times the Entropy H) for our path 

aggregation problem duly match those of the entropy measure, mutatis mutandis in view of the sign 

change. In particular, we note without surprises that S: 
 

(i) is negative: the Logsum is always larger than (1-C), the probabilistically weighted average 

p i ii
V p V  , because probabilities are always positive fractions and all ln ( ) 0ip  . 
 

For the same reason, use of the arithmetic mean (1-D) yields a difference equal to ln( )i ii
m p , clearly 

always negative again. In fact, as demonstrated in (2-B), any set of path utility weights normalized to sum to 

unity will necessarily produce a value inferior to that of the Logsum. The difference will be more or less 

close to S, depending on how the weights differ from Shannon’s untransformed probabilities: a case in point 

would be the use of the prospect power mean (1-E) leading to a difference equal to 

   1* * *

1 1 1
ln( )

M k k

i i kk i i
p p p

 


  

 
   

   , again negative and S  unless 1  ; 

 

(ii) is at best constant but generally decreasing with path splitting [S(x,y) ≥ S(x) + S(y)]: the 

information error concerning a joint path is at least as important as the sum of information errors 

concerning the paths considered individually. 
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In the simple case of the splitting of an alternative into two equal options, comparison of S* [containing the 

original term ln( )c cp p ] to S** [where the original term is replaced by two terms equal to 

( / 2) ln( / 2)c cp p ], yields 
** *[ ln(2)] 0cS S p    , ceteris paribus.  

 

If all options have equal weight, splitting them (or generally increasing their number) will decrease S 

eventually to 0. Formally, if the measure S(M) pertains to M alternatives of equal probability 1/M, then 

( ) 0S M   as M  . 
 

(3-A)  ( ) (1/ ) ln(1/ )S M M M M  , 

(3-B) ( ) ln(1/ ) ln( )S M M M    , 

(3-C) ( ) 0S M  ; 
 

(iii) has a minimum equal to ln(M), for a constant number of paths M, when all the pi are equal. 
 

To see this, note that the following minimization problem:  
 

(4-A) [ ln( )]
i

i iip
Min p p , s.t. 1ii

p  , 

 

yields, upon forming the Lagrangian 
 

(4-B) ln( ) ( 1)i i ii i
L p p p    , 

 

the following first order conditions, for all i:  
 

(4-C) ln( ) 1 0ip     
 

implying that all ip  be equal. This means that any change away from equality increases S.  
 

(iv) does not always increase with the variance of probabilities. 
 

Does the fact that changes away from equality of probabilities increase S mean that higher variance 

in probabilities always increases it as well? To see that it does not, consider firstly particular cases 

of changes away from equality and secondly the general case:  
 

(a) S increasing with variance: to see that S can increase with the variance of choice
3
 probabilities, 

start with cases of null variance. 
 

Consider first a pair of options of equal importance [p1 = (1-p1) = 0,5]. It is easy to show that we then 

have 
1 1 1 1/ ln( ) ln(1 ) 0 0,5S p p p iff p       , namely a measure S that increases with the variance 

of the choice probabilities: for instance, S increases from -0,6931 to -0,5623 when the probabilities 

change from (1/2,1/2) to (1/4, 3/4). 
 

Similarly, start with the triplet of options of equal importance (1/3, 1/3, 1/3) and increase the last to 

( , ,1-2 )    by drawing equally from the first two. Again, S increases with the variance of probabilities: 

it equals -1,0986 when all probabilities are equal and -1,0397 if  = 0,25. But this is another case of 

changes away from equality. What of the more general case? 
 

(b) Sign of changes in S unrelated to that of changes in variance: to see that there exists no general 

relationship between the direction of changes in the variance of probabilities and that of changes 

in S, consider more formally the quantities of interest and their modifications following a 

marginal change in probabilities
4
, namely, in succession:  

 

                                                 
3
 The variance of the choice probabilities is not independent from that of the random term associated with each RUF: a 

large variance of this random term implies that the systematic part of the utility function, to be formulated explicitly below 

in our discussion of the seminal Abraham (1961) paper, has a relatively smaller role to play as compared to that of the 

random term. This implies heteroskedasticity of random errors, or some systematic departures from the common 

homoskedastic variance {
2
/6}. When the ratio between the mean of the systematic part of the utilities and the random 

term is extremely high, say infinite, any mean will adequately reproduce the utility of the full set of options: the case is 

analogous to that of the red bus blue bus paradox. 
4
 Such that the probabilities sum to one and the sum of their variations equals zero. 
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(5-A) ln( )i ii
S p p   and ln( )i ii

dS p dp  ; 

(5-B) 

2

2 21 1
ip i ii i

p p
M M


 

    
 

   and 
2 2

ip i ii
d p dp   . 

 

To ask whether the sign of dS  can be deduced from the sign of 
2

ipd , let us interpret these two 

quantities as scalar products of M-dimensional vectors: the former as the product of vector A with 

coordinates pi by the vector C with coordinates dpi; the latter as the product of vector B with coordinates 

ln(pi) by the same vector C with coordinates dpi. 
 

Consider now a plane, in Figure 1, defined by vectors A and B, as well as Γ, the projection of vector C on 

that same plane. It is the case that, as a scalar product, dS  is of the same sign as that of the cosine of the 

angle formed by A and Γ; for a similar reason, 
2

ipd  is of the same sign as that of the cosine of the angle 

formed by B and Γ. 
 

Figure 1. Representation of total differentials of Equations (5-A) and (5-B) 

 

Vector A 

 

Vector B Γ 

Γ’ 

 

Note that, if A and B are not collinear, one readily finds a vector such as Γ’ for which those signs differ 

and a vector such as Γ for which they are identical: in Figure 1 indeed, the two cosines are of the same 

sign for Γ but not for Γ’. The signs of the two cosines are identical only if vectors A and B are collinear 

― the signs of dS  and 
2

ipd  are then also identical. 
 

Clearly, with elements pi and ln(pi), these vectors are obviously not collinear except for very special 

values of the pi, namely all equal 1/M exemplified in the two particular cases just above in (a). In 

general, the direction of changes in the variance of probabilities and that of changes in S are unrelated. 
 

 (v) is independent from the mathematical form of the utility functions: although obvious from (3-D), 

this important practical property will shortly be explored at some length in order to search for 

systematic relationships between the value of S and the mathematical form of the iV  functions. 
 

This matters because Box-Cox transformations introduce asymmetry in the form of the response 

curves derivable from Box-Cox Logit models. In those models, the marginal utility of the LOS is 

not assumed to be constant any more, as it is in the popular classical Linear Logit model. The 

practical question is therefore whether non linearity, which implies the presence of asymmetry of 

responses to modifications of LOS, affects the aggregation error in analytically predictable ways. 
 

It will turn out that 2 1S S S   , the difference between two aggregation errors S2 and S1, where 

indices refer to models varying only in the form of the RUF, requires case by case study: little of an 

analytic nature can be said about the link between aggregation error and non linearity in the RUF. 

In fact, rejection by the data of the unreasonable assumption of constant marginal utility does not 

imply analytical properties of 2 1S S S    that are accessible without use of numerical methods. 
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2.3 Antecedents for S and consequences of obstinacy in the use of weighted averages 

In view of the celebrity of Shannon’s information measure, it may be asked whether the notion of path 

aggregation error S is in fact interesting and what benefits could arise by shifting from Mean to 

Logsum measures in processing results from path assignment models. Given that people know very 

well, if only by applying Jensen’s inequality, that these measures differ in practice, why not just live 

with a long-noticed and familiar difference? We argue and show by simulations that recognizing and 

interpreting this “well known” difference as S may prompt a redirection of practice to avoid 

significant error in the estimation of demand and in the derivation of welfare measures. 

2.3.1 Interpretation of a familiar difference: consequences in terms of context 

What is in a name? In view of the extreme simplicity of (2-C), is it in fact well known as S to all but 

the present authors? Lest we break down an open door, what are then the published transport demand 

antecedents of measure S? There appears to be two independent streams. In the first, either Shannon’s 

name appears but the formula S is used for purposes other than the measurement of aggregation error 

(2-C) or as the basis for an analogy; similarly, the entropic form -S also gives rise to another analogy 

where the probabilities are replaced by other terms. In the second, S is gratuitously computed ex 

machina in the sense of (2-C), but without demonstration and without being named or interpreted after 

Shannon. At the very least, some benefit may arise from the new interpretation of a “known 

difference” beyond that of unifying the streams, from which we consider representative cases. 
 

In the first stream, always related to demand estimation, one finds for instance Anas (1983) who has 

shown that the MNL can be derived equivalently by minimization of Shannon’s information measure 

or by maximization of utility. Explicit reference had also been made to Shannon in a Logit context by 

Theil (1969) who had defined a measure “derived from information theory” for the degree to which a 

vector p  of N expenditure shares ip , that are each functions of income and of N prices, varies 

between two periods:  
 

(6-A) ( : ) log log
N

i i ii
I p p p p p     

 

where ip  and ip  refer to prior and posterior values, and the derived closeness to S is obvious
5
. 

 

In demand estimation contexts where due reference is made to Shannon’s S, one also finds Picard 

(1987) who substitutes flows for probabilities in a minimization of the error between the origin-

destination flows ijD  to be estimated under various constraints
6
 and some a priori ijD

~
 flows. His 

objective function, derived from the Kullback-Leibler (1951) distance between distributions
7
, is: 

 

(6-B) ln lnij ij iji j
MIN D D D    . 

 

A closely related construct in terms of quantities of goods is found as part of the following utility 

function for n variants of a differentiated product and for commodity 0, a Hicksian composite good: 
 

(6-C) 0ln
n n

i i i ii i
U a X X X N X      

 

                                                 
5
 Theil (1965, 1966) had a long-standing interest in applications of information theory to economics. 

6
 This thesis is summarized in Picard & Gaudry (1998). The problem was to find, for each of 64 categories of freight 

transported in Canada, the optimal flows among the 67 principal cities (as origins or destinations), with the flows 

satisfying row and column total constraints of regional matrices for the cities situated in 8 regions (large provinces or 

groupings of small provinces). The objective function guarantees that the 64 matrices of estimated flows of dimension 

67x67 are “near” exogenously provided a priori or observed values. 
7
 Hagen-Zanker & Jin (2012) use the same distance measure applied to the normalized flows of trip distribution matrices 

and duly refer to Shannon. 
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which is assumed to hold if 
n

ii
X N  (i.e. if the individual commodities sum to the amount N of the 

differentiated product) and the ia  and   (the Logit homoscedasticity term) are nonnegative scalars. 

But the authors of (6-C) merely refer to its second term as “entropy-type” (Anderson et al., 1986, p. 6; 

1988, p. 461) or “of an entropic form” expressing the variety-seeking behavior of the representative 

consumer (Anderson et al., 1992, p. 79): in contrast with Theil and Picard, they ignore Shannon. In 

cases (6-B) and (6-C), the analogy
8
 arises from the form but the constructs in terms of goods are short 

of Shannon’s information or of Boltzmann’s entropy proper which both duly require probabilities
9
. 

 

What is in a formula? In the second stream, apparently consisting only in articles or computer 

programs pertaining to public transit assignment, the S formula is again “given” ― apparently never 

derived ― but without any reference to Shannon’s own S or to the related notion of entropy -S. 
 

For instance one finds, in the appendix of an interesting paper on schedule-based transit assignment 

(Daly, 1999), the exact expression for S, gratuitously presented as the difference between 

[
p i ii

V p V  ] and the Logsum, with the emphasis put on its negativity, duly imputed to ln ( ) 0ip  , 

but S does not seem to already have a meaning, pedigree, name or existence on its own. 
 

The same restraint prevails in documented commercial computer programs performing transit 

assignment. The closest term-for-term match to (2-C) is found in the Cube Voyager (2008) manual 

where the three mathematical expressions belong to a menu of variables calculable from effected 

multi-path assignments. These output variables are respectively called (op. cit., p. 812) Average 

Generalized Cost Skim [ pV ], Composite Cost Skim [ ln exp( )ii
V ] and Value of Choice 

[ ln( )i ii
p p ]. 

 

But no reference to Shannon is found in that manual or in those of other popular programs such as 

EMME/2 or VISUM which has an option called Utility to allow computation of output variable 

exp( )ii
V  from realized multipath assignments (PTV AG, p. 464). The forthcoming Emme 3 

program (INRO, 2010; Florian & Constantin, 2011), should add to the deterministic
10

 optimal strategy 

assignment implemented in EMME/2 a Logit choice option (Florian & Constantin, 2012). 

2.3.2 Consequences in terms of expected benefits 

Estimation of demand or mode choice functions with Logsums instead of Means should improve path 

choice fit as much as, in the past, similar operations have improved fits in demand models requiring 

some inclusive value of modal services, traditionally taken to be an average or some “optimal” path. 
 

But that is not all: in the appendix mentioned above, Daly makes an important theoretical point 

concerning probabilistically weighted averages pV  of type (1-C). They can reverse the direction of the 

effect of path improvements implied by a Logit choice because, as he demonstrates, the effect on pV  

of improving particular path c must obey the following positivity constraint: 
 

(7-A) (1 ) 0p c c c pV V p V V         

                                                 
8
 Another analogy based on a multiplicative form is the use of the expression “Gravity Model” for CES utility functions 

and, even more frequently, for economic trade and transport models based on Activities and Distance or Cost, rather than 

on Newton’s Masses and Distance. 
9
 As recognized by Anderson et al. by their use of the word with inverted commas (op. cit., p. 58) to indicate that (6-C) is 

an analogy, and in their footnote on entropy (op. cit., p. 79). 
10

 The unrealistic idea of the “optimal strategy” (Spiess & Florian, 1989) is that transit users always walk to the stop or 

station that generates the lowest generalized path cost for them. Resulting solutions (optimal strategy assignments) are 

naturally -sensitive because, in representative urban areas (e.g. Stockholm), or if large zones are used, a traveler departing 

at a given moment typically has more than a unique available path to each destination. 
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namely any impact of a LOS change on the weighted average pV  must be of the same sign as that on 

path cV . To understand this requirement, note that, starting with (1-C) and remembering (1-A), we 

have, if   varies by  c cV dV : 
 

(7-B) p c c i ii c
dV p dV V dp


  ; 

 

but, as it is the case that for i c  
 

(7-C) 
( )²

i c

i

V V

i c i c cV

i

e e
dp dV p p dV

e
   


 

 

and that for c 
 

(7-D) 
2( )²

[ ] [ ]
( )²

i i

i i

V V

c c c c cV V

i i

e e
dp dV p p dV

e e
   
 

; 

 

it follows that 
 

(7-E) ( ) ( )p c i i c c c c c c c p c ci
dV p V p p V p dV p p V V p dV      . 

 

Daly’s implied condition that 1c pV V    for both sides of (7-E) to have the same sign will 

obviously not hold if cV  is one or more units smaller than pV . Consequently (op. cit., p. 157): 
 

“[…] changes in the average can be used as an approximation to changes in the ‘Logsum’ value – 

theoretically the correct value for Logit models – only when the changes relative to the initial 

probabilities are small”, 
 

lest changes in path c produce an incoherent result on the indicator pV , i.e. violate condition (7-A). 

 

But small changes are precisely not what large transit projects or modal improvements are about. For 

this reason, not only is pV  an inadequate substitute for the Logsum in general but it can lead to 

counterintuitive results in the demand or mode choice model precisely when the change considered is 

relatively important, relative to existing “reference” options, in the project evaluation context
11

.  
 

A case in point is presented in Figure 1, which pertains to Paris, where an extension of RER train line 

E is envisaged. Over a significant part of its itinerary in the East, this line currently competes with 

other train lines A and C. But EV , the current utility of line E in the area affected by the planned 

westerly extension, is quite low relative to TrainV  because it does not yet exist in the West. 
 

Figure 2. Extension of Regional Express train line E in the densely served centre of Paris 

West   Paris Downtown East 

 
RER C 

 

                     RER A 

                     RER E  

  Planned extension of RER E   

RER C           RER C 

  

                                                 
11

 The same problem arises in the hypothetical situation of the addition of a new very bad service s with a very low Vs. In 

this case, the Logsum will, by MNL logic, increase despite the fact that 
pV  falls. 



12 

 

The westerly extension, including a new intersection with train line C, would naturally raise EV  

considerably, at least relative to the mean. In this case then, use of 
TrainV  to represent the utility of 

“trains” in the demand or mode choice functions is likely to violate Daly’s condition (7-A).  
 

In fact the benefit is necessarily understated, even if the direction of the effect is not reversed. It is 

therefore interesting to perform simulations in order to determine, for various representative situations 

met in urban mode choice models, the impact of using weighted averages rather than Logsums. 

2.3.3 Consequences in terms of impact on representative minority public transit share 

How much does it matter that Shannon aggregation error be avoided in the construction of LOS 

variables for mode choice models? To get an idea of its importance for Greater Paris, we construct an 

example from representative utilities assumed known for 3 alternatives: Car with a utility 1V  and 

Public transit (PT), composed of a first public mode with utility 21V  and a second one with utility 22V . 
 

For two distinct models of Car and PT market shares, index L denoting the Logsum formulation and 

index W the Weighted Average specification of transit utility, we need the four expressions: 
 

(8-A) 

21 22

1 1 21 21 22 22

21 22 21 22 1 21 21 22 22 1 21 21 22 22
1 1

ln

1 2 1 2ln ln
, ; ,

V V

V V V V

e eV V p V p V

L L W WV p V p V V p V p Ve e e eV V

e e e e
p p p p

e e e ee e e e

   

     
   

   
  

, 

 

and we purport to simulate the impact of changes in V22 on the difference between PT shares:  
 

(8-B) 

21 22

21 2221 22 21 22 21 22

21 22 21 22

1 21 22
21 22 21 22

1

ln

2 2 2 ln

V V

V V V V V V

V V V V

V V V V

e e
V V

e e e e e e

L W e e e eV V V
e e e eV

e e
p p p

e e
e e

   
               

     
            

    




. 

 

In Case A of Table 1, where the actual 2006 Île-de-France
12

 daily trip shares of the car (0,64) and 

transit (0,36) are first reproduced by a Logsum term based on a set of hypothesized representative 

utility values of [2,25; 1,00; 1,00], one finds that substitution of the Weighted Average term (smaller 

by S = -0,6931) underestimates the true transit share by 64%. 
 

Table 1. Impact of Shannon aggregation error on simulated public transit share in Île-de-France 

Case A (PT share Logsum)-(PT share W.A.)

Alternatives Vi Exp(Vi) pi Logsum W. Average Logsum W. Average

Car 2,25 9,48773584 0,64 Car 0,64 0,78

PT1 1 2,71828183 0,18

PT2 1 2,71828183 0,18 1,69314718 1,00 PT 0,36 0,22 63,57 % Reference Paris 2006

Total 14,9242995 1,00 1,00 1,00 S = -0,6931

Case B

Alternatives Vi Exp(Vi) pi Logsum W. Average Logsum W. Average

Car 2,25 9,48773584 0,60 Car 0,60 0,75

PT1 1 2,71828183 0,17

PT2 1,25 3,49034296 0,22 1,82593942 1,14 PT 0,40 0,25 59,51 % Increasing PT2 utility by 25%

Total 15,6963606 1,00 1,00 1,00 S = -0,6854

Case C

Alternatives Vi Exp(Vi) pi Logsum W. Average Logsum W. Average

Car 2,25 9,48773584 0,57 Car 0,57 0,72

PT1 1 2,71828183 0,16

PT2 1,5 4,48168907 0,27 1,97407698 1,31 PT 0,43 0,28 53,46 % Increasing PT2 utility by 50%

Total 16,6877067 1,00 1,00 1,00 S = -0,6628

PT service level Mode shares

(PT share W.A.)/100

PT service level Mode shares

PT service level Mode shares
2p

 
 

                                                 
12

 The Île-de-France region, comprising the Greater Paris area, had a population of 11,7 million in 2008. The information 

on shares was graciously provided by Syndicat des transports d’Île-de-France (STIF). We neglect here other modes. 
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Moreover, if the utility of the second public mode is successively increased by 25% in Case B and by 

50% in Case C due to assumed service level improvements, PT share forecasts derived from the 

Weighted Average measure of inclusive value continue to underestimate the same shares as forecasted 

by the Logsum measure. But we note that, as S increases, the relative superiority of the Logsum 

measure decreases, a property that can be analyzed more formally. 
 

Rewriting (2-C) as L pV V S  , the ratio of PT shares obtained under each specification in (8-A) is: 
 

(8-C) 
11

11

2

2

p p p L p

p p p L p

V S V V V S V VV

L

V S V V V V VV
W

p e e e e e

p e e e e e

   

  

 
 

 
 

 

where it is clear that, for a given attractiveness of the other modes represented by 1V , the ratio falls 

with increases in S. It is also clear that, if these other modes have overwhelming market shares, the 

relative importance of S decreases: if the other mode has about two thirds of the market, as in our 

Paris example, the correction matters. 
 

But, if Shannon path aggregation error can clearly make an important practical difference to demand 

(and derived welfare) estimation, does the mathematical form of the utility function ― important, as 

we shall recall, since the beginning of RUM path choice modeling in 1961 ― mitigate or worsen the 

error? 
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3. Shannon’s information measure S and the functional form of RUF 

The mathematical form of random utility functions in transport demand analysis, ignored in the PATH 

derivation of the S measure above, is in fact a fundamental behavioral issue. Linearity is extremely 

rare in nature and in practice rejected almost every time it is tested in RUF, as a survey of more than 

50 passenger and freight mode choice models where both Time and Fare variables were both 

subjected to Box-Cox transformations, has recently shown for models developed by some 30 

researchers belonging to 10 countries (Gaudry, 2011, Tables 7, 8, 9 and 18). As path choice does not 

differ fundamentally from mode choice, non linearity of Logit path utility functions is also expected 

and indeed allowed for by many commercial assignment packages
13

: we will now recall how early 

path and mode choice studies, concerned with form, conscientiously retained non linear formulations. 

3.1 The issue of curvature 

Most specifications of LOS variables used by Logit practitioners are in fact nested special cases of the 

Box-Cox transformation (BCT) applicable to any strictly positive variable Varv: 
 

(8-D) 
( )

( ) 1
, 0,

ln ( ) , 0.

v

v

v

Var

Var

Var

 


 
 



 




 

 

and notably to the variables of interest for transport project appraisal, primarily Time (for passengers) 

and Fare (for freight), present in the RUF (0-B) which can be rewritten explicitly with BCT: 
 

(8-E) 
ik( )

i i0 ik ik

k

V X 
   

 

As already mentioned above, non linearity, as illustrated in Figure 3 for the binomial case, means that 

the reaction curve to improvements in variable X1 associated with alternative 1 will be asymmetric 

with respect to its inflexion point: it would be symmetric with an inflexion point at p1 = 0,50 only if 

the data supported in (8-E) the unlikely assumption of constant marginal utility 1, for ,ik i k   .  
 

Figure 3. Classical Linear-Logit vs Standard Box-Cox-Logit Responses 

 
 

Asymmetry is therefore critically important given that, in forecasts of important changes in LOS, 

everything is in the curvature because there is no real disagreement on the identity of important 

                                                 
13

 For instance, VISUM 11.5 (PTV AG, op. cit., p. 507) allows for various options including two where the RUM, 

consisting solely of a generalized cost, is either transformed logarithmically ― in which case Kirchhoff’s distribution 

formula (Fellendorf & Vortisch, 2010, Equation 2.5) is equivalent to Abraham’s Law described below ―, or subjected to a 

Box-Cox transformation. If values for the latter are supplied from outside, the invariance problems raised by the absence 

of intercepts (Schlesselman, 1971) in the path utilities are dodged. 
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variables and because LOS changes considered are far from marginal, consisting for instance in a 

division by two of travel time. In fact, the asymmetric logarithmic response, implying a curve situated 

above that of the linear response for [1 < X1 < 5,5] in the case illustrated in Figure 3, prevailed in the 

careful empiricism of the founders of path and mode choice analysis, as we now recall before formally 

addressing the issue of the impact of the form of path RUF on the measure S. 

3.2 The secret origin of random utility models (RUM) and their functional form 

We studied the foundations of random utility modeling, apparently first developed to explain road 

path choice, and not mode choice, in a close-knit engineering milieu of the type described by Ekelund 

& Hébert (1999) for the “secret origins of microeconomics”: we carefully consulted written sources 

and queried witnesses, notably experienced transport engineers from public and private institutions. 
 

In a nutshell, it seems that formal derivations of formulae based on the Gaussian and Rectangular 

distributions, published in a scientific journal for roads and airports (Abraham, 1961)
14

, served for the 

milieu of French engineers as an explicit justification of prevailing pre-existing road path choice 

assignment models and of their descendants, all then based on a Logit core. 
 

Notably, a particular variant, sometimes called a “Logarithmic Logit” (e.g. Leurent, 1999), was soon 

designated in official French documents, and remains so to this day, under the name Abraham’s Law 

of traffic assignment, despite the fact that the Logit form itself had not been derived by Claude 

Abraham who claimed then and now that he is not the author of the so-called “Loi d’Abraham” used 

as an effective approximation of the presumably real McCoys derived and documented at length in his 

demonstrations. The attribution of this label by the milieu is all the less surprising that Abraham had 

made it crystal clear that it did not really matter
15

 what the underlying distribution really is. 
 

For transit assignment problems, the preference went to a linear RUF: Barbier’s binomial Probit 

application to bus and metro, published in 1966, may well have inspired later generalizations by 

Domencich and McFadden (1975), still all formulated with linear RUF. Now for the “petite histoire”. 

3.2.1 Logit practice and Abraham’s 1961 derivations from Normal & Rectangular distributions 

The mood on the banks of the Seine: Logit road choice applications, with non linear utilities, in 

search of a justification. It is useful to comment on four Parisian steps, distinguished and 

summarized in Table 2, to document the first RUM:  
 

1) both Setec (1959) and Abraham (1961) provide a panorama of American and French road assignment 

practices. In the former case of a Channel Tunnel study, Logit forms dominated and were applied with 

both linear (model M1) and logarithmic (model M2) RUF, both of which contained explicit AGC and were 

considered “approximations” of the Probit, called “Modèle Normal”; 
 

2-3) all formal derivations from assumed distributions of random terms found in Equation (9-B) below, 

published or not and based on the Gaussian or on the Rectangular distribution, used linear LOS terms but 

insisted that they applied as well to logarithms. They were also explicitly derived as “justifications” of 

then-current Logit practices.  
 

In a footnote (op. cit. p. v) of the anonymous Setec derivation, “Mr. Malcor” was credited with the idea of 

distributed differences in “subjective valuations” but no reference was given. And the formulation is not 

mentioned in his just-published article on road traffic and operations research (Malcor, 1958).  
 

                                                 
14

 The article, which contains a short presentation by Coquand, Abraham’s boss and Director of Roads and Traffic of the 

French Ministry of transport, is sometimes referenced with this second name, but we follow Frank Haight’s usage in his 

extensive annotated “bibliography in road traffic” (1964) and neglect the author of the administrative imprimatur. It is not 

known whether Haight had read the 1961 issues of the Revue Générale des Routes et Aérodromes at The University of 

California library where it had long been available (http://oskicat.berkeley.edu/record=b11487060~S1). 
15

 To quote him at the end of the section providing the derivation based on the Rectangular distribution: “Que la 

distribution réelle des estimations des usagers soit ou non gaussienne, nous n’en savons rien, et cela n’a, au demeurant, 

pas grande importance” (op. cit., p. 68). 

http://oskicat.berkeley.edu/record=b11487060~S1
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In his seminal paper, Abraham (1961) considered an individual n choosing between two road paths 1 and 

2 with generalized costs (GC) composed of mean linearly weighted Length and Time elements, 

respectively GC
1
 and GC

2
. He formulated (op. cit., p. 66)

16
 the choice probability, or proportion of users, 

for the first path as given by:  
 

(9-A) 
1 2

1 Prob 0n np U U     , 
 

where the utilities of the paths are assumed to be 
 

(9-B) 
1 1 1 1

n n nU GC    and 2 2 2 2

n n nU GC   , 
 

and the two errors of zero mean are respectively associated with Length (Cost) and Time elements of the 

representative GC term. He then considered how assumptions concerning the distribution of   and   

affected the structure of the path choice model, first deriving a Probit under the assumption of Normal 

distributions and another model under the alternate assumption of Rectangular distributions. He 

performed simulations with both structures for 2-path and 3-path cases based on California expressway 

data and finally addressed related problems, in particular how to handle cases of paths sharing a link and 

how to calculate revenues from tolls applied only to subsets of links.  
 

Table 2. Four steps in the development of random utility path assignment models around 1961 

Given name Constant in the RUF Form and variables in the RUF Source 

1. Existing Binomial Logit practice circa 1958 Setec, 1959 

M1 model 

02 01 0[ ]    
[ ]iCost  

paragraph 2.220 
p. iii 

M2 model [ ln( )]iCost  
paragraph 2.221 

p. iv 

2. Anonymous derivation of the Multinomial Probit, based on the Gaussian distribution, in 1959 Setec, 1959 

Modèle Normal 0 0 , ,i j i j paths      [ ], [ ln( )]i iCost or Cost   
paragraph 2.60, 

p. ix 

3. Binomial derivations
1
 and tests based on Gaussian and Rectangular distributions

2
 in 1961 Abraham, 1961 

Gaussian 
2 1 0n nV V      [ )]T i C iTime Cost     

pp. 65-66 

Rectangular pp. 67-68 

4. Designation of M2 Multinomial Logit variant as Abraham’s Law after 1961 Oral tradition & 

administrative 

documents 
Loi d’Abraham 0 0 0, ,i j i j paths       [ ln( )]iGeneralized Cost  

1
 The derivation uses a linear utility function but the author considers non linearity much more credible

17
. 

2
 With standard errors assumed equal across distributions. 

 

Although his formulation (9-A)-(9-B) is identical to that found later in CRA (1972, Ch. 5) or in 

Domencich & McFadden (1975, Ch. 4, S. 4)
18

, he did not consider the Weibull and Cauchy distributions;  
 

4) in particular, the Probit derivation was seen as a justification of Logit practice. We could not successfully 

date exactly the first use of the expression “Abraham’s Law” which combined (1-A) with logarithms of 

the iGC  to implement non linear path RUF without constants
19

:  
 

(9-C) 
1

exp( ) / exp( )
M

i i ii
p V V


  , with lni iV GC  .  

 

In step, French road manuals have long recommended values of   as high as 8 or 10 for intercity road 

path choice modeled according to “Abraham’s Law”. 
 

The use of a logarithmic RUF was also voluntary in Warner’s (1962) binary urban Logit mode choice 

model: concerned with goodness-of-fit, he compared various LOS forms
20

 and retained the logarithmic 

                                                 
16

 He claimed in a footnote linked to Equation 9-A that Setec (1959) had first formalized this model in Channel studies. 

That unpublished consulting report, easily downloadable from the referenced Ministry of Transport site, indeed contains a 

derivation of a Probit model, with RUF based solely on path costs, under the assumption of “Laplace-Gauss” errors. 
17

 As reiterated by Claude Abraham in an email to the authors, dated August 18, 2011: “In the classical [Linear] Logit, 

there is no difference between a two-minute gain on a 10 minute and on a 60 minute trip, a manifestly absurd hypothesis”. 
18

 Those authors called their model derived from a Rectangular distribution the “truncated linear probability model”. 
19

 In practice, this is compensated by correction factors called « bonuses », for instance for highways, etc. 
20

 Thomas (1967) applies the same careful methodology in a study of car commuter values of time. 
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one after a very careful analysis of residuals, noticing the inferior fit obtained under a linear form and 

referring explicitly to traditional log-linear CES production functions.  
 

This is not to say that all path choice models then used in France were straightforward applications of 

Abraham’s Law. But the Probit rapidly became part of the common toolbox: in an analysis of the 

profitability of 1961-1962 road works, the Probit curve appears, without further comment, listed 

among four diversion curve methods (Abraham & Thédié, 1966, p. 145).  
 

Barbier’s casual 1963 Probit application: transit choice, with linear utility. This casual state-of-

the-art use of the Probit model is also found in transit studies. In 1963, for instance, Michel Barbier, 

an urban planning engineer
21

 working for the Paris Region Planning Institute (IAURP) studied the 

choice between bus and metro with a sample collected by Setec and SNCF. In his working paper, 

Barbier (B., 1963b): (i) carried out a full discriminant analysis to find good combinations of costs, 

frequency, itinerary time and number of transfers which resulted in the same proportion of travelers to 

a particular destination using the bus or the metro; (ii) formulated an explicit Binomial Probit model 

of choice between these means of transport based on a difference in generalized cost (a combination 

of Cost and Time) expressed in time units D, namely
22

: 
 

“Noticing that the users’ indifference point towards means of transport, such that 50% of users take the 

bus [rather than the metro], corresponds to a time difference between them of D=5 minutes, we assume 

that each user takes the bus if he estimates that 5D  . If P(D) denotes the probability of taking the 

bus, we then have: 
 

(9-D) 
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which, making the change in variables ( )x D D   , can also be written…[…].”  
 

a formulation, linear in the generalized cost variable, that may have influenced comparable work 

carried out in Boston in 1970-1971 by Thomas A. Domencich and Daniel McFadden. 
 

Linking the Seine and the Charles rivers. The reason for pointing to this model as a potential source 

of their inspiration is that Barbier’s working paper and its published version are to some extent 

summarized and referenced
23

 in the pair of key documents resulting from these authors’ work. 
 

Strangely, however, this connection appears in the literature review (CRA, 1972, p. 3-9; Domencich 

& McFadden, 1975, p. 25), rather than in the theory development section, and no mention is made of 

the Probit analysis (9-D). All that is said is: 
 

“A French study [Institut d’aménagement et d’urbanisme de la Région Parisienne (1963)] also carried 

out a full discriminant analysis to find good combinations of times, costs, and number of transfers 

which resulted in the same proportion of travelers to a particular destination using transit.” 
 

for which the provided reference in both documents is simply: 
 

Institut d’aménagement et d’urbanisme de la région parisienne (1963). Étude de divers facteurs influant 

sur le choix entre autobus et métropolitain par les usagers des lignes S.N.C.F. de banlieue. Octobre, 

1963. Also published in Transports Urbains Vol. 1, no. 5.  
 

whereas an informative recognition of Barbier’s application would have required something like: 
 

                                                 
21

 Barbier had graduated in 1959 from the École Nationale des Ponts et Chaussées (ENPC) and done graduate work in 

operations research at the Case Institute of Technology in Cleveland. His paper (B., 1963) does not mention Abraham’s 

article. 
22

 Our translation is from the French original of the Working paper (B, op. cit., p. 16) but the published version (Barbier, 

1966) is identical, as may be verified in Appendix 1 below where Figure 4 is captured from it. 
23

 The only reference in French among the 126 listed in the CRA version, or in the list augmented to 243 for the book. 
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B., M. (1963b)
24

. Étude de divers facteurs influant sur le choix entre autobus et métropolitain par les 

usagers des lignes S.N.C.F. de banlieue. Direction des études et recherches, Institut d’aménagement 

et d’urbanisme de la région parisienne (IAURP). 36 p., octobre.  
 

Also published as: 
 

Barbier, M. (1966). Choix entre autobus et métropolitain, pp. 27-40, 51-56. Ch. II et Annexes 1-3 in 

Barbier, M. et Merlin, P., Choix du moyen de transport par les usagers. Cahiers
25

 de l’Institut 

d’aménagement et d’urbanisme de la région parisienne (Cahiers de l’IAURP)
26

 Vol. 4-5, 57 pages, 

avril. 
 

A “Gang of Four”. In any case, some 11 years after Abraham’s publication, a consulting study by 

Charles River Associates Incorporated presented in its theoretical section entitled “stochastic 

specification and estimation techniques” (CRA, 1972, Ch. 5) four derivations from (9-A)-(9-B), 

effectively adding to previous Gaussian and Rectangular branches new ones based on Weibull and 

Cauchy error distribution assumptions, yielding the Logit and Arctan form determinations of binomial 

choice probabilities. This “gang of four”, doubling Abraham’s twin achievement, even produced un 

embarras de richesse: multinomial derivations were also presented for the Gaussian and Weibull 

cases
27

 and the computational simplicity of Multinomial Logit estimation naturally emphasized. 
 

Randomness in earlier, less general, approaches. Interestingly, the revised version of the consulting 

report
28

, published as a book (Domencich & McFadden, 1975), starts with a laudatory foreword by 

Richard E. Quandt who had already noted elsewhere (Quandt, circa 1974) the extent to which the 

authors’ work constituted a “more general and sophisticated development of” some models by 

Anthony J. Blackburn and himself. These developments, treating trade-offs between modal cost and 

time as random variables
29

 in models estimated from aggregate data, are very globally referenced in 

Ch. 4 (“A theory of Population Travel Demand Behavior”) of the book as forming one of two earlier 

approaches yielding functional forms for the choice probabilities, the other being attributed to 

Thurstone’s (1927) “suggested particular case” (op. cit., p. 53). This under-identified nameless 

particular case
30

 turns out to be a Probit application, just like Barbier’s model. 
 

RUF forms in Abraham-McFadden (A-M) derivations and in their environment. Published RUM 

derivations forming “the Abraham-McFadden approach” (Abraham, 1961; McFadden, 1973) all 

assumed linear forms for the RUF, as did applications of this A-M approach by Barbier (1963b, 

1966), CRA (1973) and Domencich & McFadden (1975).  
 

                                                 
24

 Only the author’s initials are used on the front page. 
25

 In the MIT Libraries’catalog listing all volumes from 1 to 41 (except 28), the long form is used. In these Cahiers (ISSN 

0020-2207), authors’ names are found on the back of the cover page of each article or chapter. As Chapter II of Vol. 4-5 

pooled Barbier’s working paper (1963b) on the choice between bus and metro with other working papers by Merlin on 

choices between other modal pairs, the reference “Barbier & Merlin (1966)”would also be an adequate reference.  
26

 The conventional short form is used on all IAURP Cahiers document covers. The long form is «Cahiers de l’Institut 

d’aménagement et d’urbanisme de la région parisienne». The sub-headings on the front page of Volume 4-5 [Transports 

urbains. Les transports urbains et leurs usagers en région de Paris : 2] refer to Cahier theme series and their sub-

divisions. 
27

 McFadden (1975, Footnote 14) later attributed the Logit derivation from the Weibull distribution solely to McFadden 

(1973) where empirical estimates are reproduced with permission from CRA (1972). 
28

 Without the interesting Appendix A attempt to derive transport demand functions from specific Quadratic, Log-Linear 

and Stone-Geary utility functions. 
29

 Blackburn’s Ph.D. thesis, listed among the Abstracts of theses for 1966-1967 at M.I.T., and the paper clearly derived 

from it (Blackburn, 1966), as well as Quandt’s article (Quandt, 1968), are contemporaneous with early work on random 

coefficients in linear regression (Hildreth & Houck, 1968; Swamy, 1970) and might well have their most appropriate place 

in that literature recently blooming again in Mixed Logit garb in transportation, after a long dormition (e.g. Hensher & 

Johnson, 1979). 
30

 This contrasts with the claims of the consulting report where (on page 5-6) Thurstone (1927) had been credited with the 

first multinomial formulation of Equation (9), also described (on page 4-4) as a model that is “well known (see, for 

example, Luce, Individual Choice Behavior, Wiley, 1959) and need not be elaborated here”. 
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But the environment was changing: if Blackburn (1966) formulates a linear RUF, many, including 

Warner (1962), practitioners of Abraham’s Law, and Quandt (1968), formulate or test and willfully 

select multiplicative RUF. 

3.2.2 Fogel’s unresolved cliometric question of 1964 

By contrast with these practitioners of Abraham’s Law or with Warner and Quandt, many at the time 

indeed avoided hard form test work and relied on fast and easy linearity. For instance, Fogel (1964) 

was interested in defining a measure of changes in generalized transport costs following the 

introduction of rail in a 19
th

 Century world where water and rail modes competed and maintained 

positive market shares. Instead of due changes in a Logsum, a notion available only later (Small & 

Rosen, 1981), he used the difference between water and rail costs (extreme cases of 0 and 100% 

market shares of rail) to build his principal measure, called alpha
31

:  rail waterGC GC . 

 

As noted in the survey of 50 models referred to above, such a priori linear specifications have since 

been rejected in numerous Logit freight mode choice cases (op. cit., Table 9) where Box-Cox 

transformations, e.g.  ( ) ( )C C

rail waterGC GC
  , were tested for rail, road and water, and notably in the very 

large European canal project Seine-Nord Europe linking the Paris area to Belgium (Setec International 

et al., 2006). 
 

Fogel found that, as an explanatory variable of “social savings”, the difference between linear costs 

(alpha) was not very significant (Davis, 2000). The cliometric question is then whether a more 

adequate Logsum measure, or even appropriately non linear forms of alpha derived with Warner’s due 

care, would have given less disappointing results than those obtained under unlikely linearity. 

3.2.3 The impact of RUF form on S 

Problem formulation. Non linearity of path choice RUF specifications might be established by trial 

and error, as in applications of Abraham’s Law where the coefficient   is conventionally changed 

manually according to the road type, or by Warner’s ad hoc method where simple powers of variables 

are manipulated to improve fit. To reach beyond such special cases, we consider the more general 

specification of the RUF formally based on determination by the Box-Cox transformation
32

 (8-D). 

The question in practice is then whether there exists a systematic link between the value of the BCT on 

the key LOS variables found in path RUF and the S measure. 
 

To answer it, we reintroduce Abraham’s observation subscripts, useful here to isolate specific values 

of LOS variables with particular properties, and compare two choice models differing only in RUF 

form. By assumption, we have 1 2 and in inp p , the estimated individual shares or choice probabilities for 

models 1 and 2, formulated with the same number of variables (to simplify notation without loss of 

generality) but different constraints on the   BCT parameters applied to the independent variables of 

each model, namely:  
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31

 To estimate alpha, Fogel focused on a sample of 30 of the 825 potential routes between pairs of cities in the West and 

East of the United States. 
32

 There are of course other ways to introduce non linearity of the RUF. For instance, Palma & Picard (1995) successfully 

use a cubic form on travel time in a Probit model for the Île-de-France region. 
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where the indices are , 1,i m M  for alternatives, 1,n N  for observations, and where one associates 

1 1 1,  and in in mnp V V  to model 1 and 2 2 2,  and in in mnp V V  to model 2. In the representative utility functions 

1 2 and in inV V  where 1,k K  denotes independent variables and sets 1 0 1 1( , , )i ik ik    and 

2 0 2 2( , , )i ik ik    summarize the parameters associated to models 1 and 2, respectively. 
 

Note again that use of BCT in path choice models assumes that an alternative-generic constant (AGC) 

is used on all M paths of each origin-destination pair because invariance of BCT form estimates to 

changes in the units of measurement of the variables requires the presence of a regression constant 

(Schlesselman, 1971). In path choice however, none of the M constants can be set at zero for a 

reference path (as in the case of modes) because paths have no natural labels. But the required AGC 

constant, which modifies all path shares by adding a common amount to all RUF and consequently 

has a modeling role of its own, still has to be estimated
33

 if one is to stay away from simple power 

functions which have uncorrectable problems
34

. 
 

Path constants are typically ignored in applications of Abraham’s (non linear) Law, as they were in 

(linear) Logit applications to road tracé choice (McFadden, 1968, also 1975 & 1976) and to road path 

choice (Dial, 1971): in the latter case, vehicles are assigned, between an origin and a destination 

separated by the shortest length L*, to each path of length L “proportionately to  *exp L L 
 

” (op. 

cit., p. 91). 
 

This said about (10), the difference of interest for our purposes can be defined compactly as follows:  
 

(11) 
   2 1 2 2 1 1 2 2 1 1

2 1 2 1

ln ln ln lni i i i j j j jj i
S S S p p p p p p p p

D D C C


      

, 

 

where the terms D2 and D1 collected in the first parenthesis are direct (own) terms and the others 

found in the second parenthesis, C2 and C1, are cross terms in the sense that we are interested in 

effects of changes in a particular variable 
1 2iqn iqn iqnX X X   (such as Time or Fare) that is common 

to both models but, in (10), appears only in the own RUF of alternative i. 
 

A first question concerning S  might be whether there exists a value of 
1 2iqn iqn iqnX X X   for which 

errors of aggregation S2 and S1 are equal: to find such a crossing point, we could solve 0nS   for 

iqnX 
, but the result would be of limited interest. 

 

Much more interesting for our purposes should be the existence of a maximum or minimum difference 

between the two measures obtained by first solving / 0n iqnS X    for the turning point iqnX 
 and 

then by determining whether it is a maximum or a minimum by considering the second derivative 
2 2/n iqnS X   , evaluating it at the critical point iqnX  , and finding out how it changes signs when 

iqnX  

passes through it. 
 

Having found the expression for the second derivative, one could envisage solving 
2 2/ 0n iqnS X     to 

determine the inflexion point iqnX , but this value would also be of very marginal interest for the 

central issue, that of the existence of a general impact of distinct RUF forms on S, and in particular of 

the difference between linear symmetric and non linear asymmetric cases. 
 

                                                 
33

 An approach to the estimation of alternative-generic path constants for all paths is discussed in Gaudry & Tran (2011). 
34

 For instance, in contrast to BCT, simple powers do not maintain the order of the data (Johnston, 1984, p. 63). 
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A focus on the turning point. We therefore focus the analysis on the derivation and properties of the 

turning point iqnX 
. We present here the short form of the first and second derivatives of S  with 

respect to 
iqnX  and reserve for appendices, using a longer form wherein probabilities are made 

explicit, 
iqnX  is isolated, and solutions for it can be readily considered ― at least qualitatively―, the 

demonstration that there is no analytical solution for this turning point iqnX  , which must be found and 

also signed by numerical methods. 
 

Starting with the first derivative of (11) with respect to 
iqnX , which may be written in short form:  

 

(12) 
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it is made clear in Appendix B, using the long form of (12), that finding the critical value iqn iqnX X   

that equalizes it to zero is not analytically feasible and requires numerical methods.  
 

But of course this value iqn iqnX X   will be a maximum or a minimum depending on whether the 

second derivative evaluated at that point is negative or positive. For this sign determination, the 

second derivative of (11) with respect to 
iqnX  may in turn be written in short form from (12) as: 
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and it is shown in Appendix C, using the long form of (13) with terms arranged to again put the 
iqnX  

in evidence, that such sign determination also requires a numerical exercise. 
 

The maximum or minimum difference between error measures S2 and S1 therefore bears a systematic 

link with the functional form of the RUF but that linkage can only be evaluated by numerical 

methods, on a case by case basis: it always depends on many variables and parameters in non linear 

ways unfortunately not amenable to analytic treatment. 
 

This conclusion remains if the comparison between the two models distinguished solely by functional 

form of the RUF is effected between any sophisticated nonlinear (asymmetric response) Box-Cox 

Logit and a pedestrian Linear (symmetric response) Logit. 
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4. How many Logsums for dense transit networks? 

The clear superiority of Logsum over weighted average LOS measures implies that the choice among 

paths within transit and car networks should be addressed by Logit models. In many actual modal 

networks, this could mean accounting for subtle differences among transit modes or road types by 

dummy variables associated to the relevant links of the transit or road networks and concentrating the 

effort on the explanation of path shares between origin-destination points. This includes a role for path 

constants, notably when the long-demonstrated non linearity in LOS is handled by Box-Cox 

transformations rather than by simple power functions of generalized costs
35

 or of individual LOS 

service variables. But modes have specificities. 
 

A baker’s combinatorial dozen? In public transit networks, should a compromise layer of branches 

be considered between the traditional modes (car, transit, on foot, etc.) and the transit path access 

means, especially when the number of transit modes is plethoric? Our Paris predicament is that there 

are at least 4 different types of buses
36

 (Ordinary, Bus Rapid Transit (BRT), T-Zen
37

, Local 

minibuses), 2 kinds of tramways (large ones on rails, with high windows; smaller ones on tires) and of 

metros (ordinary and automatic) and regional trains of quite different characteristics, “feel” and 

comfort. If a hierarchy is considered, which of these 10+ means are the high modes and which the low 

modes merely serving as access to the higher modes and requiring a path access model of their own?  
 

And should the transit hierarchy depend on the direction of a return trip? Conceivable hierarchies
38

 are 

many but are not nested in a statistical sense. It might well be easier to obtain specific cross-effects 

(including complementarity) by including in the RUF of a MNL the characteristics of some other 

modes (with due constraints on LOS forms), as in classical microeconomic demand systems, than to 

decide on the most credible hierarchy of higher and lower (access) modes among 10 transit modes. 
 

Is Wardrop equilibrium in palliative care? Path costs are always generalized costs. So, if 

equilibrium methods are used to model road path choice, two acute problems arise. First, even in the 

simplistic case where time and cost intervene linearly, user equilibrium is unique only if users have a 

single value of time or if cost and time change with flow on each link in identical manner (Dafermos 

1983). Moreover, as in Wardrop’s equilibrium link flows are unique but the number of itineraries used 

is unknown and their identity is not analytically derivable from the optimal solution
39

, their due 

aggregation by Logsums is problematic. The necessity of identifying all itineraries effectively used, in 

conformity with the path aggregation theorem (PATH), should prompt a movement of analysts and 

commercial programs away from equilibrium assignment and towards the use of Logit based methods. 
 

This hold also for extensions of Wardrop equilibrium to public transit passenger flows, as in 

Pirandello (Piron & Delons, 2007) where volume-delay curves are replaced by volume-discomfort 

curves ― with comfort defined by the number of users per square meter of vehicle space. The same 

objection applies to replacement of comfort by other notions, such as wait-time at stops. 
 

Are freight assignment models exceptions? It might be thought that freight, where choice of mode 

and path is often combined within an extended mode-and-path abstract choice formulation, would 

avoid the multipath assignment and aggregation problems discussed above for passengers and still 

                                                 
35

 As noted above, the Kirchhoff formula (PTV AG, op. cit., p. 511) is indistinguishable from Abraham’s Law. 
36

 Among the 1 433 bus lines covering 24 660 km of routes, many are complementary with the rail system but many are in 

competition with it. The metro part of the rail system currently has 300 stations on 215 km of lines and the Grand Paris 

Automated Metro would add 175 km of lines and about 60 stations. 
37

 T-Zen buses in service since 2011 in the Paris area benefit from dedicated Bus Rapid Transit (BRT) lanes but have 

tramway-type doors and windows. Fish or fowl? 
38

 A Bus-Train layer was developed in the first version of the SAMPERS regional model for Sweden (Transek, 1999) and 

abandoned when the model was revised and updated in 2003 (Transek, 2004a, 2004b). Other models, such as PRISM, 

developed for Birmingham (Rand Europe, 2004), had many fewer transit modes than Paris. 
39

 Sometimes authors use very astute patches (e.g. Bar-Gera, 2006; Bar-Gera et al., 2012) to compensate for this lack. 
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obtain relatively good fits by simple shortest path methods. But that would underestimate the 

refinement of freight assignment procedures. For instance NODUS, originally conceived in this way 

(Jourquin, 1995; Jourquin & Beuthe, 2006) has recently added a procedure which retains the least cost 

mode-path itinerary and assigns the origin-destination flow to competing itineraries in proportion to 

costs (Jourquin & Limbourg, 2007): but proportions bring us back to Abraham’s Law... 
 

It would seem that, between the opposite excesses of non nested hierarchies of dubious meaning and 

simple-minded shortest path and equilibrium assignments, multiple path realism combined to the 

Logsum can go a long way, notably in plethoric networks, towards making sense of observed multiple 

path use and reflect the value added by enriching already dense modal networks, urban or not. 
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5. Conclusion 

We have interpreted the often mentioned difference between Logsum and average utility in terms of 

Shannon’s (1948) information measure S, leading to a Path Aggregation THeorem (PATH). It states 

that, in transport networks where unique measures of the utility of multiple paths are required for 

demand model formulation purposes and the true path choice model is Multinomial Logit (MNL), 

constructs based on weighted averages of path characteristics derived from multipath assignments 

always underestimate the utility of multiple paths, a deficit exactly equal to S (corresponding to 

minus-one times entropy) if the weights are the path choice probabilities. 
 

We have studied the properties of this S measure of aggregation error, along with those arising from 

other types of averages of path characteristics, outlining some implications for demand or mode 

choice model formulation and project appraisal. Notably, the validity of the PATH does not depend on 

the specific contents of the representative utility functions (RUF) associated to paths, such as their 

mathematical form or their eventual inclusion of alternative-generic constants (AGC). We have 

showed by simulation that averaging modes or sub-modes ― a frequent feature of traffic modeling 

studies ― can lead to important errors in terms of level of traffic and of welfare measurement. 
 

Concerning the mathematical form of the RUF, we have recalled that, after the publication of 

Abraham’s 1961 random utility model (RUM) of road path choice deriving the Probit specification 

based on the Gaussian error distribution (and another specification based on the Rectangular error 

distribution), French engineers used this seminal approach as justification of road path choice 

formulae then in current use and assigned the name “Abraham’s Law” to a particular standard one, 

effectively a “Logarithmic Logit” close to the logarithmic RUF carefully specified for Logit mode 

choice by Warner in 1962. For transit assignment problems, the preference went to a linear RUF: 

Barbier’s casual binomial Probit application to bus and metro, published in 1966, may have inspired 

the later generalizations by Domencich and McFadden. 
 

In view of many founders’ conscientiously crafted nonlinear Logit formulations, and more generally 

of the repeatedly demonstrated presence of nonlinearity in RUF path and mode specifications since 

their careful work 50 years ago, we have analyzed the impact of such nonlinearity on S. This impact is 

tractable through a comparison of measures S2 and S1 associated with two path choice models 

differing only in RUF form, as determined by Box-Cox transformations applied to their level-of-

service (LOS) variables. We have showed that, although the difference between measures S2 and S1 

may reach a minimum or a maximum with changes in LOS, the solution for such a turning point 

cannot be established analytically but requires the use of numerical methods. The demonstrable 

impact on S of nonlinearity, or asymmetry of Logit curve response, is consequently tractable only at 

non trivial computational cost. 
 

We have pointed out that the path aggregation issue, whereby aggregation of paths by Logsums differs 

from aggregation of their characteristics by averages, is not limited to public transit (PT) projects with 

more or less “common” lines competing in dense urban transit networks (our particular Paris 

predicament) but also arises in other modes whenever distinct itineraries or lines compete within a 

single mode. Concerning dense urban PT networks, we have hypothesized that Logsums based on 

multiple path assignments treating all transit means (about 10 in our problem) as one modal network 

should, using Ockham’s razor, be simpler than the insertion of a layer of choice hierarchies among 

such urban means based on non nested specifications embodying assumptions on the identity of 

“higher” and “lower” means, the latter reasserting the multiple path access problems the hierarchies 

were designed to solve in the first place. Concerning road networks, the proper accounting of multiple 

path use to avoid Shannon aggregation error points to an abandonment of Wardrop’s equilibrium in 

favor of Logit choice, as it does for any application of Wardrop to transit path choice. 
 

This shift should favor transit when it is the minority mode. 
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Figure 4. Formulation théorique des résultats observés pour le choix entre autobus et métropolitain 
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9. Appendix B. The long form of the first derivative 

We wish to document more explicitly, but still partially
40

 for brevity, the steps taken to isolate 
iqnX  in 

(B-2), the long form of (12), the first derivative of S  with respect to 
iqnX .  

 

Making probabilities in (12) explicit and first isolating 
iqnX  only in all partial derivatives, one obtains: 
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can be rewritten in a form where 
iqnX  no more appears in the 1 2ormn mnV V  of the direct terms, in the 

1 2 or jn jnV V  of the cross terms, or in the 1 2 and in inV V   belonging to both. 

 

Concerning these terms, note in passing that, if 1 2 0iq iq   , the 1 1( / )iq iq   and 2 2( / )iq iq   

terms, now absent from 1 2 and in inV V  , are reassigned inside 1
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to yield 1exp( log )iq iqnX  and 2exp( log )iq iqnX . 

 

Now, assuming that 1 2, 0iq iq   , we obtain the desired long form that is clearly without analytical 

solution for the desired turning point iqn iqnX X  :  
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 The detailed steps taken from (12) to (B-2) for all first derivatives are described in full in Gaudry et al. (2008). 



30 

 

(B-2) 

 2 2

2

2

2

*

2 2 2 2 2 2 2

1

12 2 2 2

2

22 2 2

1 ( / ) ln exp exp( / ) exp

exp exp exp( / )
2

expexp exp( / )

iq iq

iq

iq

iq

n
in iq iqn iq in iq iqn iq mnm i

iqn

mn in iq iqn iqm i
iq iqn

mnin iq iqn iq m i

S
V X V X V

X

V V X
X

VV X















       
   

 
  

  






 







   

 


 

 1 1

1

1

1

*

1 1 1 1 1 1 1

1

11 1 1 1

1

11 1 1

*

2

1 ( / ) ln exp exp( / ) exp

exp exp exp( / )
2

expexp exp( / )

1

iq iq

iq

iq

iq

in iq iqn iq in iq iqn iq mnm i

mn in iq iqn iqm i
iq iqn

mnin iq iqn iq m i

jn

V X V X V

V V X
X

VV X

V














       
   

 
  

  

 








 







   

 


 

 

   

 

2

2

2

1

2 2 2 2

12

22

2 2 2 2

*

1 1 1 1 1

1

ln exp exp( / ) exp

exp

1 exp / exp

1 ln exp exp( / ) exp

exp

1

iq

iq

iq

iq

in iq iqn iq mnm i

jn

iq iqn

iq iqn iq mn inm i

jn in iq iqn iq mnm i

jn

V X V

V
X

X V V

V V X V

V















       

 
 
 
      

        















 



 

 

   
1

1

1

12

1 1 1 1

,

exp / exp

.

iq

iq

j i

iq iqn

iq iqn iq mn inm i

X

X V V









 
 
 
 
 
 
 
 
 
 
  
  
  

        










 
 

where 
2 1( ) ( )

1 2 2 2 0 2 2 2 2 1 1 0 1 1 1 1, 0, ( / ) and ( / ).ik ik

iq iq in i ik ikn iq iq in i ik ikn iq iqk q k q
V X V X

           

 
         

 



31 

 

10. Appendix C. The long form of the second derivative 

We wish to document more explicitly, but still partially
41

 for brevity, the intermediate steps taken to 

isolate 
iqnX  in (C-6), the long form of the second derivatives of S  with respect to 

iqnX .  

 

For this, we focus on the first and third components of (13) corresponding to direct term D2n and cross 

term C2n in (11). The second component, D1n, may be obtained from the first by replacing 
2inp  with 

1inp  and the fourth component, C2n, from the third by replacing 2 jnp  with 1 jnp . 

 

In component 
2nD , the first and second derivatives of 

2inp with respect to iqnX  are, in turn: 
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and  
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where replacing 2 /in iqnp X   with its value given in (C-1) allows for the following formulation: 
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whereby replacing 2 /in iqnp X   and 
2 2

2 /in iqnp X   by these values now yields for component 2nD  
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 Further documentation of the detailed steps of these manipulations from (13) to (6-C) is available from the authors. 
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In component 2nC , by contrast, since only 2inV , which includes iqnX , appears in 2exp mnm j
V

 , the 

first and second derivatives of 2 jnp with respect to iqnX  are, in turn: 
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and  
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whereby replacing 2 /jn iqnp X   and 2 2

2 /jn iqnp X   by these values now yields for component 2nC  

2 2

2

2

2( 1) 122 2 2

2 2 2 2 2 2 2 2

22

2( 1) 22 2

2 2 2 2 2

2

1 1
(1 ln ) (exp 2 ) 2 1 (exp )

1
(exp 2 ) (1 ln ) 2 1

iq iq

iq

iq

iq

jn jn in iq iqn jn jn in iq iqn

jniq iqn

iq

jn in iq iqn jn jn

iq iq

p p V X p p V X
pX

p V X p p
X

 



                      


   

 






 






 2 2

2

1

2

.
iq iq

jn

n iq iqn

p

X


    
          

 


 

 

And the long form may now be written with terms arranged to again put the 
iqnX  in evidence: 
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where the four probabilities and their respective RUF are, successively for own terms: 
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and for cross terms: 
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an expression that clearly cannot be signed analytically for given turning point values iqn iqnX X  . 


