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0.1. Abstract, key words and JEL classification 
Setting a context for a discussion of rail demand function curvatures. As envisaged High Speed Rail (HSR) 

projects typically anticipate a reduction by half or more of existing rail Travel Time, ridership and revenue 

forecasts depend critically on the curvature of the rail demand curve defined with respect to both Fare and Time 

levels of service (LOS), in addition to Frequency. We discuss these curvature issues and derived forecasts within 

the Quasi-Direct Format (QDF) architecture in use since the US Northeast Corridor Transportation Project of the 

1960’s: a product of Total Market size and Mode split component models. 
 

The Logit component in a QDF structure admitting power transformations of variables. We study 

curvatures with Box-Cox transformations (BCT) applied to the variables of both components but our discussion 

focuses on the Logit piece used in representative QDF structures because modal diversion effects of new HSR 

services tend to dominate the slower long-term induction effects of increased market size, so that net discounted 

project results are driven by Linear Logit specifications prevailing to this day, in transport as in other applications. 
 

The establishment of BCT non linearity and its use in forecasts. Our analysis starts with a reference summary 

of results from three Canadian mode choice models formulated in 1976-1978 and in 1992-1994 for the purposes 

of forecasting the effects of major infrastructure changes, respectively new airports in Southern Ontario and faster 

rail in the Quebec-Windsor Corridor. We emphasize how HSR revenue maximization of rail Fares and Speeds 

obtained under hypothesized Linear forms then yielded higher revenues than under data determined optimal Box-

Cox forms even if their market shares were higher on relatively long distances. The rest of the paper interprets or 

positions these results among others and further documents Corridor model forecasts. 
 

The prima facie meaning of gross BCT profiles in 40 models. Concerning interpretation, we point out that, 

although basic consumer demand theory does not constrain admissible values of BCT in Total demand and Logit 

Mode choice components of Modal demand models, actual estimates are in fact generally compatible with “Cost 

damping” claims: (a) Time and Cost sensitivities (expressed as first partial derivatives of the demand function) 

typically fall with Distance in passenger and freight markets, except in urban passenger markets where Time 

sensitivity almost always increases; (ii) relative sensitivities (the Value of Time) always increase with Distance, 

irrespective of whether slopes fall at a decreasing (damped) or at an increasing (amplified) rate, in the 40-some 

surveyed models built by some 30 researchers for 10 countries. Such empirical regularities establish a 

fundamental difference between intercity and urban markets based on the second derivatives of demand functions. 
 

Gross and net power values. We further suggest that such real gross BCT power value sensitivity profiles 

estimated without taking the attitude to risk into account could in fact reflect two effects that, as shown in recent 

seminal work on Rank Dependent Utility (RDU), can be identified by products of power functions of Fare or 

Time, to wit a simple power to determine the attitude to outcome risk (probability) and a BCT power to determine 

the attitude to outcome proper. We also reinterpret recent models making successful use of interactions between a 

Distance variable raised to a simple power and a LOS variable (especially Travel Time) sometimes raised to a 

BCT power as identifying, also by a product of functions, an “attitude to Distance” that allows for an explicit 

breakdown of gross attitudinal parameters between attitude to distance and attitude to outcome elements. 
 

Robustness of results from estimated curvatures. We imply overall that, beyond mere fit and other 

demonstrated benefits, untested linear forms of Standard Logit utility function variables are theoretically 

unexpected as representations of price-time utility maps, statistically unsustainable in many samples ranges where 

prima facie gross cost or time damping or amplification prevail in absolute and relative senses, practically biased 

as conditional bargaining games to play with data, and often demonstrably unsound or misleading in the 

production of HSR passenger and revenue forecasts, and no doubt elsewhere as well.  
 

Key words: Logit, Box-Cox transformation, Box-Tukey transformation, High Speed Rail, Canada, Quebec-

Windsor Corridor, Sweden, German ICE trains, France, Quasi-Direct Format (QDF) transport models, 
Armington Format trade models, Total transport demand models, Mode split models, Logit models, Price-Time 

Probit models, Dogit models, Inverse Power Transformation models, modal Induction, modal Diversion, Level-of-
service (LOS) sensitivity, Response asymmetry, Cost damping, Cost amplification, Value of time (VOT), Rank 
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0.3. Summary: the abstract with details added in italics 
 

Setting a context for a discussion of rail demand function curvatures. As envisaged High Speed 

Rail (HSR) projects typically anticipate a reduction by half or more of existing rail Travel Time, 

ridership and revenue forecasts depend critically on the curvature of the rail demand curve defined 

with respect to both Fare and Time levels of service (LOS), in addition to Frequency. We discuss 

these curvature issues and derived forecasts within the Quasi-Direct Format (QDF) architecture in 

use since the US Northeast Corridor Transportation Project of the 1960’s: a product of Total Market 

size and Mode split component models. 

 

This project departed from the prevailing Direct Demand Format (DDF) practice of explaining 

Tm, the transport demand for any of M competing modes, by as many functions of all modal Fare 

and Time level of service (LOS) terms and of all intermediate and final activity (IFA) terms 

reflecting activities Aa or socio-economic Yy determinants of travel. 

 

The new QDF architecture core: (i) explained each modal demand Tm by a product of two 

functions, one determining total demand for all modes TTOT [= fd(Aa, Y, U)] and another the 

mode split pm [= Um / m Um]; (ii) recognized two corresponding potential roles (on market size 

Induction and on modal Diversion) to all previously used variables, notably through the 

inclusion in the model for TTOT of a coupling term U constructed from the denominator of the 

mode choice model; (iii) made the Um attractiveness (Utility) function of each mode depend only 

upon own Fare and Travel Time terms (i.e. on the Fm and TTm from the diagonals of LOS 

matrices of variables, and never on off-diagonal terms), thereby imposing the fiat of additive 

separability of modal utilities and revoking the former possibilities of complementarity among 

the modes; (iv) combined this own-LOS diagonal “slavery” to the pre-existing own-OD pair 

“slavery” of the DDF whereby any flow Tm,ij from origin i to destination j could only be 

explained by LOS or IFA variables obtaining one or more of the same own Origin-Destination 

pair indices (i.e. only by ij indexed values and never by ik or jn indexed values). 

 

In addition to this compounding of the IIA consistency built on spatial indices of all LOS and 

IFA terms with a new IIA consistency built on the LOS variables, the QDF structure maintained 

fixed forms for all variables involved in determining Tm = [ fd(Aa, Y, U)]•[Um / m Um]. At first, 

the product involved two models of multiplicative form, an (unconstrained) Gravity-type 

specification for the Total trip component and a multiplicative Mode split model for the second 

component. This changed around 1975 when the Logit, emerging in Linear form despite earlier 

examples to the contrary, became the Mode split model of choice and the reference workhorse of 

a vast consulting industry in both transport and other fields.  

 

The Logit component in a QDF structure admitting power transformations of variables. We 

study curvatures with Box-Cox transformations (BCT) applied to the variables of both components 

but our discussion focuses on the Logit piece used in representative QDF structures because modal 

diversion effects of new HSR services tend to dominate the slower long-term induction effects of 

increased market size, so that net discounted project results are driven there by Linear Logit 

specifications prevailing to this day, as they still do outside of transport applications. 

 

Our strong focus on Box-Cox Logit form flexibility, effected within a QDF structure that is still 

consistent with the double IIA straightjackets just mentioned, aims at limiting paper length and is 

based on the fact that the demonstrated existence of the non-constant nature of the marginal 

utility linked to Fare and Travel Time terms (in such QDF structures respecting original IIA 

restrictions for mode split and generation-distribution components) is essentially unaffected by 
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generalizations of that structure that allow for potential complementarity among modes 

(rejecting additive separability of the utility of close travel alternatives) or among OD flows 

(rejecting the additive separability or independence among spatial transport or trade markets 

considered). We therefore refer only in passing, and merely for the sake of completeness, to 

these generalizations, such as the Generalized Box-Cox Logit (a workable form of the Universal 

or Mother Logit) and OD flow models admitting of spatial correlation among residuals: the 

additional role of cross-terms is specifically addressed in a previous paper on air demand.  

 

The establishment of BCT non linearity and its use in forecasts. Our analysis starts with a 

reference summary of results from three Canadian mode choice models formulated in 1976-1978 

and in 1992-1994 for the purposes of forecasting the effects of major infrastructure changes, 

respectively new airports in Southern Ontario and faster rail in the Quebec-Windsor Corridor. We 

emphasize how HSR revenue maximization of rail Fares and Speeds obtained under hypothesized 

Linear forms then yielded higher revenues than under data determined optimal Box-Cox forms even 

if their market shares were higher on relatively long distances. The rest of the paper interprets or 

positions these results among others and further documents Corridor model forecasts. 

 

We first analyse, and find somewhat gratuitous, various popular objections raised to the strength 

of the accumulated evidence on the existence of non linearity in Logit models generally, notably 

(i) the presence of (observable) non spherical distributions of residuals due either to serial or 

directed autocorrelation, including spatial, or to heteroskedasticity; (ii) the existence of market 

segments (documented here with a Swedish case) and more generally of (unobservable) 

complete distributions of taste heterogeneity coefficients in Mixed Logit extensions (as 

demonstrated by recent Monte Carlo work on such specifications). We argue that form 

parameters are jointly determined with other system parameters and that, if some of the latter 

have distributions, the former should logically have them as well. 

 

The prima facie meaning of gross BCT profiles in 40 models. Concerning interpretation, we 

point out that, although basic consumer demand theory does not constrain admissible values of BCT 

in Total demand and Logit Mode choice components of modal demand models, actual estimates are 

in fact generally compatible with “Cost damping” claims: (a) Time and Cost sensitivities (expressed 

as first partial derivatives of the demand function) typically fall with Distance in passenger and 

freight markets, except in urban passenger markets where Time sensitivity almost always increases; 

(ii) relative sensitivities (the Value of Time) always increase with Distance, irrespective of whether 

the absolute value of slopes falls at a decreasing (damped) or at an increasing (amplified) rate, in the 

40-some surveyed models built by some 30 researchers for 10 countries. Such empirical regularities 

establish a fundamental difference between intercity and urban markets based on the second 

derivatives of demand functions. 

 

After an analysis of such models where the presence of flexible Box-Cox non linearity was 

detected for Time or Cost, we conclude that the validity of the cost damping claims is well served 

by the existence of flexible BCT non linearity and makes microeconomic sense. Making sense, 

here solely on basis of the Total market size and Mode choice determination models examined, 

simply means recognizing in cost damping (or amplification) claims the diminishing marginal 

utility of going further and the presence of curvature in utility maps governing rates of 

substitution among money and time characteristics of transport modes. In particular, it should 

not come as a surprise that linearity of Logit models is inconsistent with United Kingdom 

Department for Transport (UK Dft) cost damping concerns, as is apparently also the use of the 

log-sum aggregator in our form flexible QDF framework, its fully discrete variants included by 

implication.  
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Gross and net power values. We further suggest that such real gross BCT power value sensitivity 

profiles estimated without taking the attitude to risk into account could in fact reflect two effects 

that, as shown in recent seminal work on Rank Dependent Utility (RDU), can be identified by 

products of power functions of Fare or Time, to wit a simple power to determine the attitude to 

outcome risk (probability) and a BCT power to determine the attitude to outcome proper. We also 

reinterpret recent models making successful use of interactions between a Distance variable raised 

to a simple power and a LOS variable (especially Travel Time) sometimes raised to a BCT power 

as identifying, also by a product of functions, an “attitude to Distance” that allows for an explicit 

breakdown of gross attitudinal parameters between attitude to distance and attitude to outcome 

elements. 

 

We emphasise the existence of other benefits from the use of endogenous Box-Cox curvature 

determination, notably: (i) epistemological benefits from the establishment of statistical 

correlations whose existence, sign and size are not conditional on a priori mathematical form 

assumptions but are determined by the data, jointly with the existence, sign and size of form 

power parameters themselves; (ii) benefits from the knowledge that forecasts obtained from 

model parameters based on unconditional optimal form estimates differ from those obtained 

from non optimal conditional form parameter estimates for otherwise similar specifications, as 

we demonstrate by both analytical and simulation methods; (iii) benefits from computations of 

consumer surplus under correct curvatures. 

 

UK Dft concerns are therefore valid and matter: linear and non linear demand model forms 

imply more accurate and quite different HSR market share profiles over long distances; and 

profiles derived from demonstrably non linear models are of critical relevance to HSR revenue 

forecasts because they often imply relatively and absolutely higher rail passenger flows over 

long distances but lower project revenues. 

 

Robustness of results from estimated curvatures. We imply overall that, beyond mere fit and 

other demonstrated benefits, untested linear forms of Standard Logit utility function variables are 

theoretically unexpected as representations of price-time utility maps, statistically unsustainable in 

many samples ranges where prima facie gross cost or time damping or amplification prevail in 

absolute and relative senses, practically biased as conditional bargaining games to play with data, 

and often demonstrably unsound or misleading in the production of HSR passenger and revenue 

forecasts, and no doubt elsewhere as well.  
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1. Implications of non linearity of Logit utility functions1 

 

Curvature and forecasting: the importance of non linearity. As HSR investments basically 

divide rail travel time by half, the key to correct forecasts of the number of increased passengers 

and revenues obviously lies in the curvature of the demand curve fitted here primarily, but not 

exclusively, with Box-Cox (1964) transformations (BCT). In practice, as most of the short term 

effects of HSR happen through modal diversion, rather than through induced growth in the market 

─ of more limited import because its discounted present value is typically relatively small ─ that 

key lies in the Mode choice model, typically a Multinomial Logit (MNL) model or a close 

substitute. However, the curvature issue would be the same with any model explaining choices by 

reference to the Utility of alternatives defined by modal characteristics such as Time, Cost and 

Frequency of service and raising the question of the sensitivity of the market to changes in those 

Level-of-Service (LOS) factors, among others. 
 

To probe the issue of the existence, strength and relevance of non linearity of LOS factors, we adopt 

a modeling architecture called the Quasi-Direct Framework (QDF) which admits of many possible 

cores and select the suitable Logit core for the main body of our probe, but without neglecting in a 

second step information extracted from enriched Dogit and Inverse Power Transformation-Logit 

core examples. Results from more than 40 models provide a context to position results from three 

models designed specifically to study HSR potential in Canada.  

 

The establishment of non linearity in the Canadian and Swedish markets. We first recall results 

from the first one, published in 1978, written with a view to forecasting the impact of a new airport 

in Southern Ontario in an environment where passenger rail potential in the Quebec City-Windsor 

Corridor of Canada was already of explicit concern (Wills et al., 1976; Rea et al., 1977). 

 

We then report on two unpublished papers written with databases collected specifically to study 

various HSR options in that Corridor of 1150 km by 100 km, a band of relatively high population 

density where, counting intervening cities such as Montreal, Ottawa, Toronto and Hamilton, there 

are as many inhabitants (up to 16,0 million, or 50% of the Canadian population) as in The 

Netherlands, an area (42 000 km
2
) half of the Corridor size. The first of the latter papers was 

produced as part of a federal-provincial official and public inquiry made around 1990 and the 

second as part of a private study conducted by Air Canada and Canadian Pacific Rail (CP Rail) in 

1994. 

 

We complement these Canadian findings with those of a fourth paper, also unpublished, probing a 

Swedish national model and focused on the distinction between market segmentation and non 

linearity. Coverage of Swedish work opens the door to a discussion of two particular objections to 

the existence of non linearity: the presence of market population segments ─ and even of complete 

distributions of individual taste differences ─ and the presence of non spherical residuals. 

 

                                                 
1
 Correspondence address: marc.gaudry@umontreal.ca. This second version of this paper, originally entitled “Non 

Linear Logit Modelling Developments and High Speed Rail Profitability”, substantially modifies the original document 

following favourable comments, notably by Andrew Daly, on the usefulness of a summary of work on the use of Box-

Cox transformations. The expanded survey is based on collaborations with co-authors of the joint papers, past or in 

progress, plundered here, notably Staffan Algers, Florian Heinitz, Matthieu de Lapparent, Jörg Last, Alexandre Le 

Leyzour, Benedikt Mandel, Werner Rothengatter, Cong-Liem Tran and Michael Wills. Such international research 

would have been impossible without the support over the years of Transport Canada, of the National Sciences and 

Engineering Council of Canada (NSERCC), of the Alexander von Humboldt-Stiftung and of the SEW-Eurodrive-

Stiftung of Germany, of the Conseil National de la Recherche Scientifique (CNRS) of France and of the Transport-

Ekonomiska Forsknings-Stiftelsen (TFS) of Stockholm. I am also most thankful to Staffan Algers, Andrew Daly, Lasse 

Fridstrøm, Lester Johnson, Richard Laferrière, Matthieu de Lapparent, Jordan Louvière and Juan de Dios Ortúzar for 

specific information generously provided or helpful suggestions. 

mailto:marc.gaudry@umontreal.ca


 9 

In these four models, the analysis of the implications of non linearity is established in the usual way 

by a comparison of overall measures of fit and of elasticities obtained with different forms. Best fit 

forms are shown to be typically non linear and to imply very different elasticities from linear ones, 

at least for Time and Cost factors, but without neglecting in passing the non linearity of Frequency 

of service. 

 

But, in addition to providing such indicators, the authors of the Air Canada-CP Rail study also 

formally optimized train speeds and fares in their model and, interestingly, found that HSR 

investments forecasts based on (optimal) non linear forms were less profitable than if they were 

based on (rejected) linear utility functions. This simulation analysis was made observation by 

observation, but the detailed results were not shown on graphs. They were implicitly related to 

Distance in aggregated constructs for a few important origin-destination (OD) pairs, or markets, but 

the individually calculated forecast differences between models differing only in form were not 

further graphed against Distance, or any other Corridor factor, to provide a sense of the total 

picture. 

 

Making sense of actual non linear form estimates. The difficult question of the values to be 

expected for BCT parameters in such studies is then raised as an attempt to answer “Cost damping” 

queries recently put in the United Kingdom. The existence and nature of Cost damping and of its 

opposite, Cost amplification, is pinpointed on the basis of our survey findings concerning BCT 

Time and Cost parameter estimates from models pertaining to intercity passenger or freight and to 

urban passenger Logit applications as well. 

 

Overall, the survey results reveal two extraordinary regularities of the ranges of estimates: first, they 

show that damping predominates, i.e. that demand slopes with respect to Time and Cost typically 

fall with distance at a decreasing rate both absolutely and relatively; second, they also indicate that 

the amplification exceptions, i.e. slopes falling at an increasing rate with distance, do not occur at 

random but are found in almost all urban and rarely in some of the longest intercity markets. 

 

We argue that LOS risk, as formalized in Rank Dependent Utility (RDU) approaches, might explain 

these cases of amplification, and notably the clear specificity of urban model results, as could also 

the growing practice of multiplication of LOS factors by simple powers of Distance interaction 

terms, a practice newly interpreted here as the measurement of an attitude to Distance to be 

distinguished from the reaction to Distance already accounted for in the levels of the LOS variables. 

 

Revenue forecasting implications of non linearity. We argue that, to understand implications of a 

given model, there is in practice no alternative to the detailed simulation approach and to an 

analysis of forecast differences by relating them to a variable of interest, such as Distance. We 

therefore apply the new label “Distance profile” to analyses formerly made in two European 

markets and proceed to perform similar “Distance profile” analyses of Canadian results obtained 

from the official government-approved Corridor model. 

 

Overall evidence from such simulations for business trips in the Corridor, made obvious by 

Distance profiles, is that optimal non linear forms rarely produce higher passenger mode share gains 

than presumed linear forms. And when they do for relatively long trips, these may occur 

simultaneously with lower ones for relatively short trips where most potential clients are found, 

thereby implying lower overall expected HSR revenue gains, a situation we call linear model over-

prediction bias. 

 

But proper forecasts are not the only benefit derived from tests of functional form: knowledge that 

results are derived from “form-sensitive” correlations also matter for the Quebec-Windsor Corridor 

project in an environment where linear Logit models occupy the field, in transport and elsewhere. 
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2. The QDF framework with a Logit core 

 

Demand framework or format. Mode choice, despite its dominance in project assessment, is only 

the principal dimension of Demand determination. It needs to be considered within a complete 

representative demand framework that matches current best demand modelling practice. 

 

In the early 1960’s, transport demand formulations at first simply enriched existing microeconomic 

consumer demand system formulations where Income and Prices of all goods as a rule appeared in 

the demand function for each good. The enrichments recognized that the derived demand for 

transport should depend on levels of intermediate and final Activities, and not just on Income, and 

that Service conditions of all M modes mattered as much as their Prices. This “Direct Demand” 

(DDF) format, may be written for any origin-destination (OD) pair (o = 1, … , O; d = 1, … , D): 
 

(0-A) 1od ,m o d od , od ,M
T f ( A , A ;U ,..., )U , m = 1, ... , M;  

 with 

(0-B) od ,m od ,m od ,m Socio economicf ( Cost , Service ) ; XU     ,  

 

and we remain for the moment intentionally vague concerning the units of measurement of money 

and time characteristics of the modes. 

 

As such DDF formulations and their variants, typically of multiplicative form, posed considerable 

problems of collinearity and often yielded “unreasonable” signs for most coefficients of modal 

characteristics, a complete family of new models arose, in the context of and within the Northeast 

Corridor Transportation Project (NECTP), which progressively resolved many problems 

satisfactorily by replacing Direct framework (0) by Product framework (1) combining Total 

Demand and Mode Split components. The resulting “Quasi-Direct” format (QDF) design basically 

retained the market scale determination component of DDF models and recombined modal Prices 

and Service levels within a Mode split component that eventually proved amenable to both 

aggregate and discrete formulations. In addition, the components could be coupled. 

 

During the transition period from Direct demand by mode to Quasi-direct demand by mode, many 

formulations of the modal choice component were tried
2
, to wit: ratios of Levels of service (LOS) 

variables, such as Cost and Time characteristics of each mode m to “best mode” levels; “abstract 

mode” generic constraints imposed on LOS coefficients with a view to forecasting the potential 

demand for supposedly “new” modes
3
. Most formulations maintained the multiplicative form of the 

equations
4
.  

 

As a consequence, direct demand models became a minority stream either in simple multiplicative 

form or in more sophisticated garbs. In the former, they are still adopted in local studies focussed on 

the demand for a single mode and modified heroically in ad hoc fashion, for instance to make the 

elasticities variable or sensitive to “competition” (cross service terms), as in Wardman (1997). In 

the latter garbs, they have borrowed the theoretical sophistication of the “trans-log” (Christensen at 

al., 1971), a second order approximation adding to the simple product of variables all of their 

                                                 
2
 Different new approaches were gathered by Quandt (1970) in an excellent book.  

3
 The reader might consult Lave (1972) for a typical discussion reflecting this confusion to be clarified later when 

formulations based on BCT made it possible to nest most of the individual specifications. 
4
 In Appendix A of CRA (1972), unfortunately never published, authors tried to link the form of the aggregate demand 

equations to the structure of underlying Quadratic, Stone-Geary and Log-Linear utility functions, but their derivation 

was not successful: “Even for log-linear utility functions, the fact that the commodity “transportation” is logically 

expressed in terms of a number of attributes leads to an intractable specification of the demand function” (p. A-4). 
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interactions (e.g. Oum & Gillen, 1983), a problematic undertaking if all qualitative characteristics 

of the modes should be multiplied in as well; and the issue will not go away if a Linear Expenditure 

System formulation is adapted to all these service terms (Andrikopoulos & Brox, 1990). 

 

But the rise of mode choice models proper, especially of the discrete kind, soon occupied the largest 

part of the research space and almost all of the practical project forecasting space, as it still does to-

day. Some discrete choice specifications were soon extended to the explanation of the amount of 

trip making but we will not deal with them explicitly here. 

 

We discuss non linearity within the QDF framework, whereby Todm, the Demand for a particular 

mode m from i to j, is obtained as a product of a model of the Total transport market by all modes 

TodTOT and a model of Modal split Podm. Neglecting od subscripts, this may be expressed as: 
 

(1)    ,TOTT T Pm m   
 

or, more explicitly, as: 

(2)  
m

m c d m m m 1, ... , MT f ( A , A ,U ) U / U , , 
 
 
 

  

 

where the model of Total demand by all modes contains vectors of activity variables Ac and Ad, 

such as Population and Income, and an index U of the utility of travel often called the “inclusive” 

value of the modes is automatically used as coupling term. It is simply the denominator of the mode 

split model where each Modal utility Um term summarizes the attractiveness of a particular mode:  
 

(3) m

m

U U , 0mU   

 

This framework admits of many Modal utility “cores” characterizing both Split and Coupling where 

the Split may come from either aggregate (explaining market shares) or discrete (explaining 

categorical individual choices) applications, as shown in Tran & Gaudry (2008g). 

 

Logit quantities or cores. In the Multinomial Logit
5
 core, the split model p(i) explaining the 

market share or choice probability of the i
th

 of M modes, is:  
 

(4)  





Cj
j

i

V

V
ip

)exp(

)exp(
 , i, j = 1,..., M 

 

where the Vi functions are the so-called “representative utility functions” (RUF) of the modes and 

consist in modal characteristics, such as Time, Cost and Frequency of service that we focus on here, 

and in socio-economic traits of travellers. We are mostly interested in Logit core quantities exp(Vi) 

based on the MNL but Section 7 defines enriched alternate cores. And any core might rely on one 

or more RUF specifications. 

 

Representative utility functions. For the RUF, we first adopt the classical tradition whereby 

representative utility functions are specified with respect only to own-mode network variables X
i
n 

and to socio-economic variable Xs common to all alternatives: 
 

(5) 
i

i Network Socio economicV f ( X , X ) . 
 

We will relax later this constrained view based on the stunning assumption that the attractiveness of 

a mode does not depend on the characteristics of other modes and is therefore said to obtain 

                                                 
5
 As pointed out by Maddala (1983, p. 42), there is no algebraic difference between the Multinomial Logit (MNL) and 

the “Conditional” Logit proposed by McFadden (1974), which just happened to make choices depend on LOS variables 

in addition to Socio-economic variables in an urban mode choice problem. We adopt the MNL term. 
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“separable” utility. But inclusion in (5) of network characteristics of other modes than the i
th

, an 

enrichment possibility touched on below in passing and detailed in Appendix B, is not central to our 

form concerns and would not substantially modify our central conclusions on form matters, as 

demonstrated at length elsewhere in the related context of the modelling of competition among 

airports (Gaudry, 2010). 

 

Model components with fixed and stochastic parts. To discuss non linearity in the determination 

of the Demand for a mode Tm, we first need to specify the fixed and stochastic parts of both 

building blocks TTOT and Vi. We do this with contrasted Box-Cox Classical and Box-Cox Logit 

regression specifications, respectively stated for each model component as: 
 

(6-A) 
 

,

( ) ( )

0 ,
TOT k

TOT t k k t t

k

T X u
     , where t is an observation subscript and 

 
 ut is IID Normally with variance 

2
[f(Z)t];  

and each set Z of variables Z1,  …, ZH may include some Xk variables and [f(Z)t] ≥ 1; 

and  

(6-B)  
( )

0   k

in i ik ikn in

k

V X e
  , where n is an observation subscript and 

 

 the ein of all M modes are IID Weibull, each with variance 
2
i

2
[fi(Zi)n]/6 and the i stands 

for the scale factor of the Weibull distribution {f(ui) = (1/i[exp(-uii)][exp(-exp(-uii)]}; 

and each set Zi of variables Zi1, …, ZiH may include some Xik variables and all [fi(Zi)n] ≥ 1; 
 

where we use fW , the commonly named “Box-Cox Transformation” (BCT) applicable to a variable 

fW or to a function 
fW  . The BCT, the best known and most used of the power transformations, was 

formulated in direct form by Box & Cox (1964) and introduced in inverse form by Gaudry (1981):  
 

 Direct Power Transformations (DPT) Inverse Power Transformations (IPT) 

(6-C) 

 ,f f fW    Conditions
6
  

1

,f f fW  


 Conditions
7
 

 BC BCG
8
 

1f

f

f

W





 0, 0f fW     

1

1
f

f fW


    0, 1 0f fW     

ln fW  0, 0f fW    exp fW  0, 0f fW    

 BT BTG 

  1
f

f f

f

W






 
  0, 0f f fW      

1

1
f

f f fW


     0, 1 0f f fW     

 ln f fW    0, 0f f fW      exp f fW   0, 0f fW    

 

At this point, we need to be more explicit concerning the treatment of error variance discussed at 

length further below: we provisionally assume constancy of error variance, called 

                                                 
6
 Under certain conditions, it is also possible to transform an explanatory variable that contains some zero observations 

but is not a Boolean (dummy) variable. 
7
 This development of inverses in early 1978 was partly aimed at transforming the dependent variables of probability 

and share models in the same way as one transforms the dependent variable in (6-A), a predicament if probabilities 

must directly sum to one. But this constraint can be indirectly met if the transformations are applied to right hand side 

quantities, Modal utility functions for instance. They bring out in probability models the possibility that, in addition to 

belonging to LOS variables, curvature also belongs to each Modal utility term, an issue discussed further in Section 7.  
8
 The label was intentionally invented by students as a pun on the French name of a vaccine given to children. 
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homoskedasticity
9
, despite the fact that both (6-A) and (6-B) as specified have very general built-in 

heteroskedasticity formulations. 

 

In the former, the assumption of homoskedasticity {
2
} requires that {[f(Z)t]=1} or, alternatively, 

dividing all variables (dependent and independent including the intercept) by {[f(Z)t]
1/2

}, an 

expression proposed in Gaudry & Dagenais (1979b) which conveniently includes many classical 

fixed-form heteroskedasticity specifications as nested special cases obtained by specializing values 

of the BCT and of the m coefficients: 
 

(6-D) 
( )

( ) =exp Zm

t m mt

m

f Z Z



 
 
 
 , where  ( ) may contain one  t mt ktf Z Z X . 

 

In the latter, where we have used an analogous formulation for each representative Modal utility, 

homoskedasticity requires that the {i} and all {[fi(Zi)n]} equal 1 or, alternatively, demands dividing 

all variables including modal constants of utility functions by {[i[fi(Zi)n]]
1/2

} where 
 

(6-E) 
( )

, ,( ) =exp Zm

i t i m i mt

m

f Z Z



 
 
 
 , and , , , ( ) may contain one  i t i mt i ktf Z Z X . 

 

The reasoning behind (6-E) is simply that, if an heterogeneous error variance equal to {
2
i

2
/6} 

requires dividing all regressors of the Modal utility by {i} to obtain homoskedasticity {
2
/6}, an 

error variance equal to {
2
i

2
[fi(Zi)n]/6} likewise requires

10
 dividing instead by {i[fi(Zi)n]

1/2
} to 

obtain homogeneity {
2
/6} of the variance of each Weibull distributed error, as will be done below. 

 

Transformations, model components and form structure. QDF formats allocate LOS variables 

jointly to Modal utilities Um and to the coupling term U. So changes in LOS impact Modal demand 

Tm through both paths. In these circumstances, the study of curvatures of demand functions with 

respect to Time and Fare LOS and U variables transformed by BCT is directly dependent on the 

form structure (U, T, F) assumed or estimated. 

 

As many practitioners associate the log-sum term, obtained if (U = 0), and linearity of the other 

terms (T = F = 1) even if these need not be joined, it is useful to define a reference case triplet in 

this way: we will see that it corresponds to demand slopes that are completely independent from the 

LOS variables and posses no curvature. 

 

Our ceteris paribus analyses of effects of changes in LOS variables do not mean that the application 

of BCT within a model is solely limited to form structure elements (U, T, F). 

 

The QDF structure with a Logit core and some known models from the 1960’s. For our ends, 

there would be no conceptual gains in replacing the aggregate model of the Total demand for all 

modes TTOT in the QDF structure (1), a proper demand function, by a probabilistic component. It is 

the coupling that makes for a proper demand function because Modal utilities determine both Split 

among competing modes and the overall attractiveness of available alternatives sustaining the Total 

demand for travel. Naturally, other structures also explaining total demand, and consequently 

reaching beyond the mere explanation of splits, can be built and constitute proper demand functions 

where Total demand is endogenous.  

 

                                                 
9
 Note that we reject in English the spelling “homoscedastic”, as recommended by McCullough (1985). 

10
 This may be understood as a pre-specification of “corrected” representative utilities with independent homoskedastic 

Weibull errors discussed at length in Palma & Thisse (1987).  
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An advantage of the QDF framework is that it nests many intercity models formulated for the 

NECTP and allows for a number of Logit core variants as well. For instance, grouping (6-A)-(6-B) 

and (6-C), the framework may be fleshed out, neglecting error terms, as:  
 

(7-A) 

( ) ( )jn js
j 0 jn jn js js

Xk n s

1 ( ) ( )mn ms
TOT m0 mn mn ms msU

n s

( ) ( )U jn js
j0 jn jn js js

n s

K M X X
( )

0 k k

k 1 j 1

( ) X X( )

m M X X

j 1

X e
e

T

e

 

 

 

  


   

  
 



 

 

 

 



 
 

 
       

     
      

 
 

 


 

 

which , if all BCT are set to zero, yields the seminal multiplicative model by McLynn et al. (1968): 
 

(7-B) 

mn ms

U

jn jsk

jn js

n sK M

n s

k n s M

k 1 j 1 n s

n s

j 1 n s

m

X X

X X X

X X

T

 


 

  



 

  
                         

    

 
   

  
 

 

and closely related formulations
11

 by McLynn & Woronka (1969). Such multiplicative formulations 

resemble, but should not be confused with, another multiplicative design developed at the same 

period as the QDF by Armington (1969) and favoured since by trade flow analysts
12

, but that was 

only relatively recently applied to transport flows (e.g. Gillen et al., 1999, 2001). 

 

A third format. In that Armington demand format, the Um functions are raised to a common simple 

power,  for instance  
 

(6-F)  m mU Cost


  
 

for a case with a single modal characteristic, where this power  is the Constant Elasticity of 

Substitution (CES) across alternatives specific to the total demand market considered and the 

coupling term (3), called “Armington aggregator”, now obtains a different composition, namely 
 

(6-G) 

1/
M

m m

m 1

U C os t











 
    

 
  

 

where the m modal weights have to be determined somehow
13

.  

 

DDF, QDF and Armington formats are in competition but, fortunately, Anderson & Palma (2000) 

and Palma & Sanchez (1998) have provided a theoretical specification within which the last two are 

nested and should eventually be compared. They have shown that, if one uses the following BCT 

specification (1 )    on (5), the systematic parts of the Vm functions found in (6-B):  
 

(6-H)  
 

1
1 /

/ , 0 1
1

i

i

V
f V




 





  


 

 

where the i from (6-B) are constrained equal, then setting 0  yields [exp(Vi)], the Logit 

Quantity (4), and 1   yields [Vi]
-(1+)/

 ≡ [Vi]
-

, the CES Quantity (6-F). 

                                                 
11

 For a detailed discussion of many such cases nested into the QDF and of the related mode-abstract model by Quandt 

& Baumol (1966) and its successors (Young, 1969), the reader may consult Gaudry & Wills (1978). 
12

 That literature has to specify structures in which each commodity (like a modal flow) is traded everywhere and in 

both directions (in spite of the theory of comparative advantage) in quantities that depend on all individual commodity 

Prices (or, in transport, eventually on their Service quality-adjusted generalization). 
13

 Gillen et al. (1999, 2001) assume that they are equal across alternatives but sample market shares are sometimes 

preferred with similar arbitrariness. 
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Unfortunately, the CES specification (6-F)-(6-G), originally based solely on Cost, is hard to extend 

to Service quality variables, except perhaps by ad hoc rigidly multiplicative quality adjustments to 

Cost
14

. Moreover, even without the issue of the unavoidable incorporation of all LOS factors, the 

estimation of simple power functions poses problems of its own documented in Appendix A. Their 

estimation (i) may lead to degenerate solutions, (ii) does not preserve the ordering of the data and 

(iii) is not continuous at zero, a critical area for model values, nesting and taxonomy. 

 

We surmise that those unavoidable LOS specification issues and the difficulty of obtaining an 

endogenous determination of weights in (6-G), combined with the supplementary care required to 

estimate simple power functions, will keep the Armington format a rare occurrence unless Box-Cox 

tests based on (6-H), absent even from Anderson & Palma (2000), show that it should prevail. 

 

Sequential estimation of QDF component models. For the well tried QDF with the Logit core 

design (7-A) adopted here, we assume without loss of generality that the Multinomial Logit Mode 

choice component is estimated first and the Total demand component second. This sequential 

approach matches prevailing disjoint practice and conveniently allows refined focus on the issues 

pertaining to each component, such as form and stochastic specification. But there might be a 

hidden cost beyond that of efficiency loss to the extent that, over time since 1975, socioeconomic 

characteristics have migrated to the mode choice model without demonstration of their relative 

merits in each component. Joint estimation would favour proper assignment of such variables to 

either or both components. 

 

Some authors of course do prefer to gain efficiency by the direct estimation of the Log likelihood of 

Tm defined by (2), although this can make for a very complicated maximization problem. For 

instance, Laferrière (1988, 1999) estimated the Air Path demand resulting from the product of a 

Total Air market and of an Air Path choice model for the domestic Canadian air market but took 

many of the mode choice form parameters considered, based on IPT-Logit form (12-A) below
15

, as 

given. 

 

In any case, the product of Maximum likelihood estimates for each component of (7-A) yields 

Maximum likelihood estimates for derived results calculated from the product of chosen estimated 

pairs of models, as effected by algorithms
16

 that allow such QDF combinations based not only on 

Logit cores but on many other cores as well
17

.  

 

But a more important practical limitation of our chosen (7-A) should be mentioned, that of its 

“double IIA consistency”, which is not a necessary feature of all constructs of type (2)-(3). 

 

Doubled-up IIA blinkers, or reinforced diagonalism. We have pointed out in the third
18

 section 

of a previous paper on competition among airports (Gaudry, 2010) from which some of our current 

tables are drawn or inspired, that the QDF structure (7-A) is in fact consistent with the 

                                                 
14

 Liked by theoreticians (e.g. Tirole, 1988, Ch. 2) but which will suffer from lack of flexibility when aligned against a 

flexible form Box-Cox Logit where the optimal form is generally no more logarithmic than it is linear, as we document 

extensively below. 
15

 As documented in Section 7, the Inverse Power Transformation-Logit core makes it possible to identify specific 

constants for all alternatives (here air paths), in contrast with Logit cores where the identification of all intercepts 

important to the author is impossible.  
16

 The QDF algorithm (Tran & Gaudry, 2008g, 2010) allows for 20 such possible products. See Table 12 below. 
17

 Section 7 illustrates two Dogit (Gaudry & Dagenais, 1979a) and two Inverse Power Transformation-Logit (Gaudry, 

1981) cores. 
18

 The first section develops input-output matrix representation of transport flows; the second addresses conceptual 

structure issues in the determination of LOS performance in networks; the third, summarized in Appendix D, 

emphasizes the importance of moving away from OD-type consistency with IIA to understand transport or trade flows. 
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Independence for Irrelevant Alternatives (IIA) axiom of choice theory (Luce, 1959) in two senses: 

first, with a Standard Box-Cox Logit utility function based on (5), only own LOS variables appear 

in each Modal utility function; second, in the complete structure, only own-OD flow indexed 

variables are admitted. 

 

The focus of that third section is on breaking up this “diagonal slavery” either with a Generalized 

Box-Cox utility function specification of type (8-A) presented as a workable form of the Universal 

or Mother Logit (McFadden, 1975) in the Mode choice piece, or by taking spatial autocorrelation 

into account in the Total demand piece: both methods introduce cross-diagonal terms that move 

away from IIA diagonalism in one or both senses of this expression. 

 

A key finding is that, in all known examples, introducing non linearity to LOS variables in Logit 

models causes higher log-likelihood gains than further adding suitably non linear cross-diagonal 

terms
19

, a result that is without surprise if the vast literature on systems of demand equations, where 

cross-diagonal effects are rarely if ever dominant, is recalled. Other key results on the rejection of 

separability among competing OD flows, so important to tourism and air markets, are not as 

directly relevant here but are also consistent with the view that getting the right form on the 

diagonal matrices of LOS terms is a more important practical matter than further breaking IIA 

consistency with the addition of off-diagonal terms, be they themselves of the proper data-

determined form or not. 

 

In a demand system, liberation from diagonal slavery is less important than liberation from 

incorrect form. 

                                                 
19

 For instance, in the freight model used for Figure 11 below, and coming from Gaudry et. al. (1998), the introduction 

on two BCT on Distance and own Price increases the log-likelihood by 46 points (for 2 degrees of freedom) and the 

further addition of two cross Prices by 25 points (for 4 degrees of freedom), but the BCT on own price changes only 

from -1,83 to -1.89. This Generalized Box-Cox form, where the three modal prices appear in all Modal utility functions, 

is used by the French ministry for Transport since 2006. 
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3. The establishment of non linearity in Logit models 

3.1. A starting point: is marginal utility constant, really? 

The first question raised by classical Logit representative utility functions, in the past and now, is 

whether their linearity can be credible, as assumed long ago (e.g. Domencich & McFadden, 1968, 

1975) in spite of previous work with logarithmic specifications based on “the fact that this type of 

[logarithmic] relationship has often proved successful in other types of demand analysis, and by the 

fact that the scatter diagrams appeared to support the hypothesis in this case” (Warner, 1962, p.27). 

Testing is warranted, if only because linearity is as unexpected in Nature as in microeconomic 

consumer demand theory. 

 

On this, note that the more general Box-Cox specification (6-B) makes the effect of a network 

service improvement depend on the level of the modified characteristic, as shown in Table 1. This 

implies that the impact of a 10 minute change in travel time is not the same for a short and for a 

long trip; it also makes derived marginal rates of substitution between time and money (values of 

time or VOT) vary both across modes (due at least to different sample levels of the characteristics) 

and with the amount of time saved. It can therefore in principle avoid much combinatorial market 

segmentation used by energetic piecewise linear approximation analysts to obtain reasonable and 

variable trade-offs by class of distance, fare level, departure frequency, income, etc. 
 

Table 1. Marginal utility in representative utility functions of a Standard Box-Cox Logit model 

Form 
 1mkm

mk mk

mk

V
X

X







     

2
2

2
1 mkm

mk mk mk

mk

V
X

X


 




   Returns 

  1 mk mkX 2
  2 3mk mkX  Decreasing 

  0  mk mkX  2

mk mkX  Decreasing 

 1  mk  0 Constant 

  2  mk mkX  mk  Increasing 

 

It is also worth remembering that, as shown in Figure 1, non linearity implies that the market 

probability (or share) response curve to any change in modal characteristics is asymmetric with 

respect to its inflexion point and, contrary to the linear case, does not have the inflexion point at 0,5.  
 

Figure 1. Classical Linear-Logit vs Standard Box-Cox-Logit Responses 
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In Figure 1, the x-axis does not designate the representative utility function V1 from (4), which 

always yields a symmetric response curve of the choice probability, but a particular variable X1 

included in V1, in this case Air Time. So, if one believes that a response curve so defined for a 

mode, diffusion or learning process, is not symmetric with respect to a particular factor, this belief 

implies an underlying non linear utility function, and conversely. In practice, it might not really 

matter whether one believes that the function is linear or not because only tests should make a result 

acceptable: if one’s belief is that the function is non linear, the belief should be put to the test of the 

data; and, if one has no idea of the true form, only tests can determine the nature of the relationship. 

The practical issue of curvature, as formulated by Warner, is clearly at least one of “scatter 

diagram” fit; but it also goes much deeper, as we shall later demonstrate. 

 

But, beyond asymmetry of response curves, one can observe other interesting features in Figure 1 

where each asymmetric curve implies, over the range of variable X1 favourable to mode 1, a specific 

profile of differences between market shares (or probabilities) predicted by any two model variants 

differing only in form, for instance the reference linear and any maintained non linear models. 

Denoting by 
1Xp  those differences calculated with respect to a certain variable X1, and giving to 

plots of 
1Xp  against X1 the name “X1 -Profiles of 

1Xp ”, positive values within such profiles mean 

that the reference linear model under-predicts market shares and negative values that it over-

predicts them. 

 

In Figure 1, the three X1 -Profiles of 
1Xp  derivable from the reference and the three maintained non 

linear response curves shown happen to generate two sequences of alternating sign ranges, the 

second more difficult to identify visually: 
 

 (i) under 1X   in the maintained model, the sequence: [under-prediction  0np   at 

relatively low values of X1; over-prediction  0np   at mid-range; under-prediction 

 0np   at relatively high values of X1]; 
 

(ii) under 1X   in the maintained model, the sequence: [over-prediction  0np   at relatively 

low values of X1; under-prediction  0np   at mid-range; over prediction  0np   at 

relatively high values of X1]. 

 

But it is important to realize that each X1 -Profile of 
1Xp  is unique and that the sequences generated 

from Figure 1 response curves are specific to the model at hand and do not depend systematically 

on the symmetry pivot 1X  , as will be demonstrated further on.  

 

For Figure 1, the model at hand, estimated only for the purposes of the figure, was a simplistic Air 

vs Car binomial aggregate application with utility functions  1

1 0 1 1V X


   and 
2 0V  , with 

parameters re-estimated for different values of 
1  with a sample of 120 intercity OD pairs for 

Canada in 1976 described in Gaudry (1990 or 1993); and with X1 = (Time by car/Time by plane). It 

is an artificial model and only the 120 OD pairs for which observations on the 4 intercity modes are 

available are chosen. The full sample contains 40 more OD pairs for which one of the 3 modes 

other than car is missing because the mode is unavailable. 

 

The decision to neglect these 40 observations was made because it is notoriously difficult, but 

possible, to estimate models of shares in which some modes are sometimes unavailable (as long as 

one of them is common) and even more difficult to estimate share models where null observations 

on modal shares are kept in the sample: a formulation (Dagenais, 1986) requiring trivariate normal 

integrals in a 3-mode specification remains to-day as unpromising as it was in 1986, except perhaps 

to Probit fans. 
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3.2. A first aggregate model for Canada (1978) 

The question of nonlinearity in Logit models was originally asked in an intercity model designed 

primarily to forecast the impact of the location of a new airport in Southern Ontario and to improve 

existing rail demand forecasts based on PERAM (Rea et al., 1977; Transport Canada, 1979). The 

data base pertained to the four intercity modes linking 92 Canadian OD pairs for the year 1972. 

 

The mode choice model was defined with generic specifications for the regression coefficients of 

the three service variables: Fare, Travel time and Departure frequency. Numerous formulations of 

these variables, including Box-Tukey origin shifts, were tested. Results in Table 2 show dramatic 

log-likelihood gains of Box-Cox forms over fixed linear or logarithmic forms. 
 

Table 2. Four-mode Box-Cox Logit equation results (Canada, 92 city-pairs, 1972)  

Gaudry & 

Wills (1978) 

Column 

Case 

Original reference 

1  

Linear 

F 

2 

Log 

E 

3  

Box-Cox 

D 

4 

Box-Cox 

C 

Fare (per O-D) 
 Coefficient -0,0008 -2,9653 -2,2254 -1,8274 

Conditional t-statistic (-11,31) (-15,57) (-18,70) (-17,09) 
Travel time (per OD) 

 Coefficient -0,0141 -1,3148 -0,3605 -0,8358 

Conditional t-statistic (-9,09) (-5,57) (-4,14) (-4,59) 
Frequency of service (per OD, except for car) 

 Coefficient 0,0114 0,4221 0,1331 13,50 

Conditional t-statistic (3,52) (4,60) (5,02) (5,36) 

Box-Cox  on Fare 1,00 0,00 -0,1930 -0,2626 

Box-Cox  on Travel time

  
rice 

1,00 0,00 -0,1930 -0,0513 

Box-Cox  on Frequency 1,00 0,00 -0,1930 +0,5712 

Log-likelihood 456,32 528,71 532,97 538,66 

Degrees of freedom  0 0 1 3 

 

Note that optimal form values found in Column 4 all imply diminishing returns (to be called 

“damping” below), in accordance with Table 1. In particular, the optimal power value of the 

Frequency of service, close to the square root, means that additional service frequency yields 

progressively smaller gains. We will comment further below on the values of the BCT for Time and 

Fare, but note already that in this case the sensitivity to Time decreases slower than to Fare, as 

indicated by their respective BCT estimates (-0,05; -0,26), a situation where the marginal rate of 

substitution (the value of time) increases with Distance, as we will typically find in our survey. 

 

The results of Table 2 (the published constants and their t-statistics are not reproduced) also show 

that, as soon as Box-Cox forms are used, regression coefficients loose all intuitive contents and 

require resort to elasticities to make some sense of the results. Consequently, the original paper 

(Gaudry & Wills, 1978) presented graphs and tables of the direct elasticities of modal shares with 

respect to network variables: we reproduce in Figure 2 the graphs of these elasticities (defined in 

Table 12), but not those of t-statistics, for the four modes. 

 

The rail elasticities corresponding to model D of Table 2 are found just to the left of 0 on the 

abscissa of Figure 2.A for the Fare and Figure 2.B for the Travel Time. Changing the form from 

Linear to Optimal roughly doubles the rail Fare elasticity and halves the rail Time elasticity! 
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Clearly then, non linearity
20

 would make a difference to HSR revenue forecasts as best fit direct 

modal elasticities dramatically and demonstrably differ from linear case values. Or do they really? 

Could discrete data re-establish the original battered linear case? 
 

Figure 2. Direct Box-Cox Logit modal share elasticities (Canada, 92 city-pairs, 1972) 

 

A. Absolute value of Fare elasticities 

 
 

B. Absolute value of Time elasticities 

 
 

                                                 
20

 The reader can consult similar graphs for corresponding t-statistics always computed for regressors conditionally 

upon the estimated values of the Box-Cox transformations: such conditional values are invariant to units of 

measurement of the transformed variables and do not suffer from the defects of unconditional estimates (Spitzer, 1984). 

The original paper graphs the evolution of conditional t-values of the Fare and Time variables against form values for 

the quantities shown in Figure 2. In this paper, all t-statistics presented are conditional on form. 
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3.3. A disaggregate model with multiple trip purposes, and more (1994) 

As microeconomic purists balk at aggregate data and have long been hard to wean from the linearity 

of their Logit models (e.g. Morrison & Winston, 1985; Pickrell, 1987)
21

, let us look in Table 3 at 

estimates of non linearity in a model based on a high quality Via Rail Canada database of 12 938 

individual trips (4 402 business and 8 536 non-business) sampled in the Quebec City-Windsor 

Corridor in 1987 for the benefit of a multi-level government task force studying the HSR potential 

of this Corridor. 

 

Is utility linear and separable? The original linear models by trip purpose found in Column 1 and 

in Column 4, originally specified independently by others (KPGM & Koppelman, 1990), are 

reproduced here from their re-analysis (Gaudry & Le Leyzour, 1994 or Tran & Gaudry, 2010a) in 

order to document in a continuous fashion first the impact of nonlinear forms (Column 2 and 

Column 5) and second the further impact of introducing in Modal utility functions (8-A) network 

variables pertaining to other modes, in the so called Generalized Box-Cox Logit form (Column 3 

and Column 6) generalization of (6-B):  
 

(8-A) 
i j
in in is( ) ( ) ( )i j

i i0 in n in n is s

n j i n s

V X X X
     


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(8-B)  
 s

sis

j

n

ij n

j

in

i

n

n

i

in0ii XXXV 
 

(Generalized Linear) 

 

where  and n s are the indices for the network and socioeconomic variables respectively and the 

upper index refers to the mode, which can be seen as a first systematic attempt at giving a workable 

form to the Universal Logit idea (McFadden, 1975) because the characteristics of all modes are 

assumed to be relevant to the utility of each mode. 

 

With suitable restrictions on the BCT values applied to own and cross network variables, this form 

(8-A) permits complex patterns of substitution and complementarity among modes, as classical 

demand systems naturally allow but the classical Linear Logit forbids by imposing a forced pattern 

of substitution based on an assumption of separability of utility among the modes. Clearly, 

parameters of (8-B), including all M constants, are all identified only if such utility functions are 

used in models like the LIN-IPT-L defined below in (12). There should in fact be two relevant 

questions: is utility linear? Is utility separable? These questions are also related: a linear form makes 

(8) collapse back to (5). 

 

Non linearity, best fit and regression signs. Concerning the first question, the results shown in 

Table 3 indicate that: (i) the original linear model yields, for non-business trips, an incorrect sign on 

the travel cost variable (and consequently negative values of time) as evidenced in the darkly 

braided frames; (ii) as one introduces 4 Box-Cox transformations (one for each transport condition 

and one for Income), the gains in log likelihood are considerable
22

 (from Column 1 to 2 and from 

Column 4 to 5) but incorrect signs of LOS variables are not fully corrected
23

 until Column 6. 

                                                 
21

 These authors benefited from the high quality National Travel Survey carried out in the U.S. in 1977. The survey 

collected information on all trips of 100 miles or more made by members of 20 000 households covering the whole 

nation. 
22

 One can show that the only transformation of the Frequency variable is not significantly different from 1. 
23

 Clearly, as the results of Table 3 demonstrate in the spirit of Fridstrøm & Madslien (2002), sign change is a critical 

issue linked to how covariances among variables depend on their form. This means that models of apparently untested 

form are suspicious and that it is inadequate to justify linearity “for simplicity”, as is still regularly done (e.g. Berry et 

al., 2004). We come back to this issue in the last section of this paper. Results presented in Columns 4-6 differ very 

slightly from those found in Gaudry & Le Leyzour (1994) due to a recent correction of weights given to individual 

observations. 
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Table 3. Comparing Linear, Standard and Generalized Box-Cox elasticities and values of time 

 Quebec City-Windsor Corridor of Canada 1987 (domestic intercity flows) 

Gaudry & Le Leyzour (1994) A. Business trips (4 402 observations)  

Tran & Gaudry (2010a)  B. Other trips (8 536 observations) 

Weighted aggregate 

probability point 

elasticity24 

Column 

Case 

 

1  

Linear 

2 

Standard 

Box-Cox 

3 

Generalized 

Box-Cox 

4  

Linear 

5 

Standard 

Box-Cox 

6 

Generalized 

Box-Cox 

Original reference Model 3 Model 5 Model 6 Model 43 Model 48 Model 105 

Cost (access + in-vehicle)   

- Plane own cost -0,53 -0,46 -0,12 0,17 -0,04 -0,08 
- Train own cost -0,05 -0,13 -0,07 0,02 -0,06 -0,06 
- Bus own cost -0,03 -0,13 -0,10 0,05 -0,17 -0,13 

- Car own cost -0,05 -0,10 -0,05 0,01 -0,07 -0,04 

t-statistic of k (-3,66) (-7,23) (-2,85) (2,14) (-6,91) (-4,18) 

Associated Box-Cox k  1,00 0,28 -0,22 1,00 0,48 -0,02 

Travel time (access + in-vehicle)   

- Plane own time -0,32 -0,11 -0,21 -0,11 0,03 -0,00 

           cross w.r.t. car travel time -- -- 0,53 -- -- 0,20 

- Train own time -0,18 -0.10 -0,12 -0,09 0,03 -0,02 

           cross w.r.t. car travel time -- -- 0,10 -- -- 0,08 
- Bus own time -0,26 -0,14 -0,14 -0,23 0,07 -0,02 

           cross w.r.t. car travel time -- -- 0,13 -- -- 0,12 
- Car own time -0,11 -0,05 -0,09 -0,06 0,02 -0,05 

t-statistic of own k (-10,19) (-5,91) (-4,31) (-6,65) (1,44) (-1,51) 

t-statistic of cross k -- -- (4,59) -- -- (8,38) 

Associated own generic B-C k 1,00 1,80 0,61 1,00 0,47 4,81 

Associated cross generic B-C k -- -- 4,94 -- -- 0,88 

Frequency   

- Plane own frequency 0,39 0,46 0,45 0,21 0,26 0,24 
- Train own frequency 0,02 0,01 0,01 0,02 0,02 0,03 
- Bus own frequency 0,12 0,10 0,11 0,13 0,17 0,17 

t-statistic of k (12,52) (11,67) (11,88) (8,35) (10,03) (11,25) 

Associated generic Box-Cox k 1,00 1,53 1,34 1,00 1,07 0,88 

Income (Gross Individual)   

- Plane (reference: car) 0,23 0,18 0,18 0,16 0,09 0,01 

t-statistic of specific k (4,99) (5,00) (5,05) (4,01) (2,72) (-0,57) 

- Train (reference: car) -0,04 -0,04 -0,04 -0,02 -0,02 -0,00 

t-statistic of specifick (-2,61) (-2,99) (-3,00) (-3,86) (-5,09) (-2,48) 

- Bus (reference: car) -0,10 -0,10 -0,10 -0,12 -0,15 -0,13 

t-statistic of specifick (-5,80) (-6,89) (-6,93) (-13,13) (-15,52) (-12,31) 

Associated generic Box-Cox k  1,00 0,16 0,18 1,00 0,33 0,44 

Other variables not reported Trip origin in a large city [...] Trip origin in a large city; party size [...] 

Log-likelihood -1068 -1058 -1049 -2179 

-2170 

-2123 -2100 

Degrees of freedom  0 4 6 0 4 6 

Hourly values of time (1987 $)   

 - Plane value of time 36,65 15,19 102,30 -23,39 -28,10 0,37 

 - Train value of time 36,65 7,44 16,68 -23,39 -2,23 1,12 

 - Bus value of time 36,65 5,33 7,42 -23,39 -1,81 0,47 

 - Car value of time 36,65 6,41 21,64 -23,39 -1,05 3,56 

 

Clearly, it is inadequate to get rid of the problem by constructing a generalized cost variable for 

non-business trips, as was done by those who first analysed this high quality database with (nested 

or non nested) linear Logit forms (KPGM & Koppelman, 1990); and it hardly more commendable 

to entirely ignore results for this trip purpose (Bhat, 1995). The fact that the existence of statistical 

correlation depends on form, and conversely, goes deeper than mere fit: it is also the presence, sign 

                                                 
24

 The probability point elasticity is the usual elasticity of the probability multiplied by the probability of the alternative. 

For details, see Table 12 or Liem & Gaudry (1987, 1993). 
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and size of statistical correlation that non linear forms address and one should never be satisfied 

with correlations that are conditional on a priori form, irrespective of sign. 
 

Accounting for non linearity and modal specificity: French “Price-Time” tandems. Even with 

non linear utility functions used flexibly and tested for mode-specificity, multinomial and nested 

Logit models based on separable Modal utility have limited ways of accounting for differing pair-

specific substitution (different cross elasticities of modal choice) between HSR and other modes. 

 

French authors (Abraham & Coquand, 1961), the first to link utility and multinomial choice, 

formulated as a Probit model but wisely approximated by a Logit model, applied it to a path choice 

problem some 10 years before work in the United States on a similar road path choice problem 

(Dial, 1971) and well before independent binomial road tracé choice work (McFadden 1968 or 

1976a) or mode choice applications (Warner, 1962)
25

. In mode choice applications, French analysts 

have often used models in pairs (e.g. Air vs Rail and Road vs Rail) in order to better capture 

intermodal rail substitution specificity and adapt to the uneven availability of detailed path network 

data across the modes. In the absence of scheduled intercity bus services in France, only two models 

are necessary. This doubling up of Mode choice also opened the door to a doubling up of the 

Generation-distribution Total demand model, again to isolate train-specific induction effects that 

may differ from mode-abstract total induction effects. 

 

But the Probit did not disappear in this context favouring use of models in pairs: a long favourite 

(e.g. Arduin, 1989, 1993), still in current application (Rail Concept, 2008), is a formulation where 

the value of time is assumed to be log-normally distributed within a binary Probit choice, an 

inflexible formulation that produces a particular asymmetry of the market response curve, in the 

spirit of Figure 1, without requiring the evaluation of multiple integrals. 

 

But using multinomial Probit (MNP) instead of Logit (MNL) models, no more appealing to-day 

than in the time of Lisco (1967) six years after Abraham and Coquand had rejected it because of its 

multiple integrals, makes the issue of LOS form flexibility even less tractable, as pointed out by 

Bolduc (1999)
 26

. However, if utility is not really separable because the Generalized Box-Cox Logit 

specification (8-A) applies, finer substitution (and potential complementarity) effects become 

feasible within the MNL and decomposition among pairs of modes looses much interest, especially 

with more than three modes. Nested Logit tree structures, that are not nested among themselves and 

are therefore hard to compare, also lose much appeal. 

 

A workable form of the Universal Logit. Concerning the second question, note in Table 3 that the 

introduction of Car travel time in all utility functions increases considerably the log likelihood 

(from Column 2 to 3 and from Column 5 to 6), especially for non business trips
27

. This addition to 

the utility function certainly modifies the error correlation structure, providing a continuous 

alternative to non-nested hierarchies of Nested Logit tree structures, and reintroduces the possibility 

of complements, as demonstrated in the freight case (Gaudry et al., 2008) to be used below
28

. 

 

                                                 
25

 We do not underestimate the work by Theil (1969) on the link with information theory and the work on aggregate 

mode choice by Ellis & Rassam (1970) or Rassam et al. (1970, 1971) explicitly relating utility and Logit quantities. 
26

 According to the author, “to implement a Box-Cox technique within a MNP setting represents a too formidable task”. 

He goes on to dodge the flexible form issue by assuming lognormally distributed value of time, thereby implicitly 

obtaining market share response asymmetry with respect to Time. 
27

 Fears of obtaining “incorrect” regression coefficient signs (Ben-Akiva, 1974) proved unfounded in Table 3, as a 

comparison of Columns 2 and 3 or 5 and 6 demonstrates, and in the freight example used for Figure 11. 
28

 As noted, analysts interested in HSR demand may reintroduce specificity to cross-elasticities of mode choice with 

pairs of choice models (2 models if they have 3 modes). The Generalized Box-Cox Logit model not only reintroduces 

such texture but the possibility of complements, thereby reinserting the Logit in the family of demand systems. 
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It will also modify the variances of the error terms, that may or may not be homoskedastic
29

 in 

linear space, a somewhat marginal problem –because only explanatory variables are transformed– 

to be addressed below as a general issue in the proper estimation of Box-Cox forms.  

 

Also, the values of time differentiated by mode obtained in Table 3 (measured in 1987 Canadian 

dollars), make more sense for business trips in the optimal case of Column 2 than in the linear one 

of Column 1. It should also be noted that all Car travel time elasticities are strong and their t-

statistics (in greyed cells) very high, which may be due to the addition of only a single off-diagonal 

term. If only one such term is chosen, time by car is surely the right one because the car, pervasive 

in that corridor (having almost 90% of the market in the total sample), is “the reference” obviously 

influencing the utility of all other modes. We also note in passing the clear presence of non linearity 

with respect to Income: indeed, why should marginal utility be constant with respect to income or to 

any other socio-economic factor if data really matter? 

 

Again, form tests appear to make a difference that suggests not too much should be made of the 

difference between aggregate and disaggregate Logit models, an issue naturally raised early in 

linear models (Donnea, 1971, pp. 32-38; Kulash et al., 1972): flexible BCT forms work on both. 

This should not come as a surprise: not only can the demand system generated by the Logit be 

associated with a single consumer maximizing a deterministic utility within a neoclassical 

framework (Anderson et al., 1988) but the practice of fitting aggregate Logit models in the presence 

of consumer heterogeneity is theoretically justified “when all consumers are exposed to the same 

marketing mix variables and the brands are close substitutes” (Allenby & Rossi, 1991), i.e. in 

conditions that perfectly describe intermodal competition. Moreover, if such common factors are 

present at the micro level, nonlinearity is likely to remain in the aggregate
30

 (Granger & Lee, 1999). 

3.4. Another disaggregate model and HSR revenue maximization (1993-1994) 

All above models were based on revealed preference (RP) data, whether aggregate or disaggregate. 

Would stated preference (SP) data originating from the Corridor, collected as usual without 

formally taking into account the possible non linearity
31

 of the utility functions, change the answer?  

 

Second thoughts again. Laferrière (1993b) and Ekbote & Laferrière (1994) used the same 

modelling sequence
32

 as that just reported for the development of Table 3 models. They started 

from a data base built, and a nested linear Logit model specified, by others (SC Stormont, 1993) and 

tested the validity of the their linear forms by adding Box-Cox transformations on each of the cost 

and time variables, but not on the frequency of service variable, changing nothing else of the model 

originally specified independently from themselves. The results, found in Table 4, show the 

weighted aggregate elasticities of the HSR train mode choice probability with respect to Time and 

Cost under linear and optimal form specifications and the stunning gains in goodness-of-fit obtained 

by the application of BCT. The optimal BCT values all differ markedly from the linear case for both 

trip purposes: the gains are, if anything, clearer than with RP data
33

!  

                                                 
29

 Heteroskedasticity was studied by Bhat (1995) with this data base using only the business trip purpose data and 

dropping entirely the bus mode (3264 observations), a doubly arbitrary stance, in view of the fact that the bus has the 

most extensive network of all public services, that avoids facing the sign issue indicated in Columns 4-5 of Table 3 for 

non business trips and perhaps also unreported problems in the treatment of heteroskedasticity of bus utility functions. 
30

 The issue of temporal aggregation, also treated by Monte Carlo simulation in that paper, is distinct from that of 

aggregation over agents. The later literature generally shows that weak conditions are required to obtain well behaved 

aggregate functions, aggregated on income (Hildenbrand, 1983) or preferences (Grandmont, 1992), such as the negative 

definiteness of the matrix of uncompensated price effects, for which tests exist (Korenman et al., 1988). 
31

 In designing samples, the SP data set should be created with a view to obtaining observations that are orthogonal not 

in linear space but in the optimal non linear utility space. How to best do this is a research issue. 
32

 Described in full in Laferrière (1993a). 
33

 Not surprisingly, some authors (e.g. Lerman & Louvière, 1978) have suggested a two-step approach whereby results 

from experimental data on functional forms derived by modifying each variable in turn (a technique called functional 
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After correcting the inherited linear form, the authors’ next step consisted in finding the most 

profitable money and time combination in the Corridor. Formal revenue maximization over Cost 

and Speed (in a range from 120 to 400 km per hour) was performed over various Frequency 

assumptions and rail ridership summed over all OD pairs (as well as specific OD pairs) using an 

updated version of the database (used in Table 3) produced by the government task force 

(OQRTTF, 1991) and the pivot method (Laferrière, 1994). 

 

Although their actual procedure is somewhat more complex than just described, in that it also 

involved adaptation of the modal constants to reflect revised sampling rates, some very interesting 

lessons can be learned from their use of non linear forms.  
 

Table 4. Model results (SP data, 1991) and revenue maximization (RP data, 1992) for 2010 

A. Regression Business trips Non business trips 

Column 1 2 3 4 

(Data: 1991)         Case Linear Non linear Linear Non linear 

Train mode split elasticities* 
Cost -0.139 -0.315 -0.169 -0.192 

Travel time -0.595 -0.502 -0.067 -0.134 

Box-Cox transformations 

Cost 1.000 0.256 1.000 0.312 

Travel time 1.000 0.562 1.000 -0.102 
Access time 1.000 0.194 1.000 0.513 

Goodness-of-fit 
Log likelihood -5182.03 -4898.75 -8730.73 -7909.65 

Degrees of freed.  0 3 0 3 

B. Percent revenue 

gain per 1% speed  

increase in market 

Business trips** (Non linear case) Non business trips** (Non linear case) 

Quebec City 

Montreal 

Montreal 

Toronto 

Toronto 

Windsor 

Quebec City 

Montreal 

Montreal 

Toronto 

Toronto 

Windsor 

120 to 200 km/h 1.62 1.41 1.19 1.07 0.65 0.85 
200 to 300 km/h 1.19 1.17 0.88 1.06 0.67 0.89 
300 to 400 km/h 1.00 0.95 0.71 1.07 0.66 0.89 

Road Distance (km) 270 560 330 270 560 330 

C. Total forecast 300 km/h scenario revenue maximizing linear and non-linear results** 

(Data: 1992)         Case Linear Non linear 

Trip Forecast 5,83 million passengers 7,70 million passengers 
Revenue Forecast $ 576 million $ 446 million 

  * Elasticities for other modes are found in Laferrière (1993b, Transparency 5). For their definition, see Table 12. 

** Calculated for 2010 network with RP sample data of 1987 updated in 1989 and 1992. 

 

First, it is clear that, as shown in Part B of Table 4, strongly increasing marginal revenue gains at 

relatively low speeds progressively decrease with higher speeds (affecting In-vehicle time 

proportionately) in the three main business trip markets. Also, in the non-business trip market, there 

is a big difference between constant returns to Speed in the Quebec City-Montreal market and 

decreasing returns in the other two markets. Second, Part C indicates that the dominant best fit non 

linear forms implied lower HSR revenues than those obtained with the (non optimal) linear form of 

the same models despite higher revenue maximizing passenger levels. Air Canada and CP Rail have 

apparently never considered HSR investments again. 

 

                                                                                                                                                                  
measurement) are used as maintained, or even final, hypotheses for the same specification estimated with RP data. This 

is a good idea when collinearity of the RP data is high, but the functional measurements have form problems of their 

own in that the ceteris paribus procedure applied to each variable in turn does not imply their independence (the 

orthogonality of their distributions). Ekbote and Laferrière follow an analogous sequence: they obtain first stage form 

results from BCT estimates on SP data and apply them (without re-estimation) to the RP Via Rail Canada 1987 database 

(used in Table 3), updated to 1992. 
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Shifting the burden of proof? Perhaps the burden of proof, on both the marginal constancy and the 

separability of representative Logit utility functions, should be reversed and the linear case never 

assumed unless it can be demonstrated to be correct. 

 

As the Box-Cox transformation effects a local approximation of form, it is quite possible that, in 

some problems where observations pertain to relatively small domains (or for other reasons 

discussed in Section 5), the linear form be sufficient. But, until tests of more global approximations, 

such as those carried out with Fourier transforms (e.g. Gallant, 1981) reach Logit models, the use of 

Box-Cox specifications seems warranted for HSR cases where non marginal variations in Travel 

Time are always required. 

 

What other objections have been raised to the use of endogenous forms? We now consider two, 

addressed with Swedish models. As analysts often decompose markets among segments, and not 

just among trip purposes, the first objection is that the use of non linear forms might confuse form 

with market segment differences. The natural extension of that objection, related to the surge of 

“Mixed Logit” models generalizing taste differences among individual, is also addressed. The 

second frequent objection is that form modification is an indirect way of stabilizing the variance of 

errors that do not have a constant error variance under linearity assumptions, i.e. that suffer from 

heteroskedasticity under a linear formulation. This second objection pertains more generally to the 

effect on form estimates of nonspherical distributions of the random terms that constitute the 

stochastic, as opposed to the “fixed” part, of models.  

 

Swedish studies on the relevance of these two objections are of particular interest because Sweden, 

like Canada, allows scheduled intercity bus services and does not regulate them out of existence to 

protect the railways, as do France and Germany
34

. Sweden is therefore a 4-mode country where 

buses provide an important intercity service, if not the first public supply in terms of network 

extension (points served), as in North America. The Swedish attitude to model development also 

makes it relevant to our concerns. 

                                                 
34

 Severely limiting scheduled national and international bus lines but allowing chartered buses, significant for tourism: 

it is estimated that there are about 2000 chartered German buses in Paris on a typical week-end. 
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4. Challenges to non linearity: market segments and stochastic terms 

4.1. Form and segmentation lessons from Sweden 

In 1979, the Swedish Board of Transport (TPR) initiated a policy of promotion of intercity 

modelling in order to obtain analyses and forecasts of all domestic passenger transport services. At 

first, many of the models were aggregate, but discrete choice models were progressively developed. 

 

Count data generation combined with aggregate Nested Logit mode choice. Among the 

aggregate models, one finds for instance a potentially interesting 3-mode model (the bus 

unfortunately neglected) of interregional flows among 70 regions of Sweden formulated by 

Sävenstedt & Uhlin (1985). They multiplied a Count data component for trip generation, estimated 

by Poisson regression, by an aggregate
35

 nested (or “structured”) Logit mode and destination choice 

model component, estimated by a non-iterated version
36

 of the Berkson-Theil estimator weighted to 

take a form of heteroskedasticity into account. This is prima facie an exceptional combination to 

learn from, but it may be even more instructive to describe the efforts then made to introduce some 

non linearity in the behavioral response to the Frequency of service. 

 

All network variables appeared linearly in the mode choice model but modal Frequency Gm was 

specified as ln[1-exp(d FRm)], where by assumption 
d 0   and FRm, the day-time departure 

frequency
37

 for the public modes, was assumed equal to infinity for the car. There are two aspects to 

this complexity: the issue of form and the problem of car frequency. To capture the former, consider 

the first and second derivatives of the representative utility functions with respect to Frequency so 

defined, namely:  
 

(9-A) 
 

m d d m
mk

m d m

U [exp( FR )]

FR 1 [exp( FR )]

    
   

    
, and 

 

2 2

m d d m
mk 22

m d m

U [exp( FR )]

FR 1 [exp( FR )]

    
   

    

, 

where                   { > 0 } and           { < 0}. 

 

Because the term [exp(d FRm)] in (9-A) is always a positive fraction, the bracketed expressions 

multiplying the regression coefficients mk are positive and negative, respectively: consequently, 

increased departure frequency always yields positive marginal utility but by progressively smaller 

amounts, exactly as happens with successive increases of Xmk in Table 1 if and when 
mk 1  . 

 

The specification of car frequency poses a distinct sub-problem because it is natural to give it a high 

and incorrect value (as inappropriately done sometimes) or to ignore it altogether as a variable (as 

correctly done here). The desirable path in the estimation of Frequency coefficient mk, adopted by 

the authors and in the models found in Table 5 or in the set of Tables 7-10 and 18, consists in 

defining Modal utility functions in a general way for all modes, for instance in a linear example 

(and neglecting the Fare, etc.), as: 

                                                 
35

 Aggregate Nested Logit models are extremely rare in transportation, much more than aggregate Logit models. 
36

 Unfortunately, this procedure, based on applying Ordinary Least Squares (OLS) to the logarithm of the odds of 

making a particular choice relative to the choice of a reference alternative, yields k coefficients that depend on the 

reference alternative chosen if the (weighted) OLS estimator is not iterated until convergence to the maximum 

likelihood value using the  variance-covariance matrix, of dimension (M-1)x(M-1), among the residuals of the 

resulting equations, as shown by Wills (1982): this estimator has the known form  = (X’
-1

X)
-1

X’
-1

y. Their one-pass 

approach, whereby analysts incorrectly think that the coefficients of their specified mode choice model are estimated 

independently from the reference mode chosen, is still frequently encountered, for instance in a model of the choice of 

port on the Atlantic seaboard, called “CPB-VITO” (Veldman & Bückmann, 2003; ECORYS Transport et alii, 2004). 
37

 As it is assumed that FRcar = ∞, so that Gcar = 0, we conclude that the actual relevant regression term is of the form 

[frequency ln(Gm), for m ≠ car]. In this case, the null car frequency disappears as a regressor and implicitly modifies the 

car representative utility constant, as shown in the linear example (9-B). 
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(9-B)    m 0, m 0 Time, m m Frequency1, m m Frequency2, mV C Time 1 Z Frequency Z           ,  
 

with Z = 1 for Car and 0 for public modes (and m = 1, …, M), the unbiased estimation of which 

simply requires a car specific constant, as the following explicitation makes clear: 
 

(9-C)  Car 0, Car 0 Frequency2, m Time, m mV C 1 Time        , 

(9-D)  Other 0, Other 0 Time, m m Frequency1, m mV C Time Frequency        . 

 

Two questions then come to mind: (i) would not parsimony argue for the adoption of a Box-Cox 

transformation of Frequency, perhaps with a fixed a priori power parameter value? (ii) if the 

marginal utility of Frequency was assumed to vary with the level of that variable, why was it 

assumed to be constant for the other network variables? Such practical questions were “in the air” at 

the start of work on discrete choice models (Algers, 1984) made possible by a remarkable series of 

Swedish surveys. 

 

National Travel Surveys, a Swedish ritual. Concerning disaggregate models for long-distance 

travel, the very important stream of national Swedish discrete choice models started with the 

availability of the 1984/85 National Travel Survey, containing about 1800 private and 500 business 

tours, which made possible a first intercity model (Algers, 1993). The subsequent 1994-97 survey, 

bringing forth a much larger data base ─ about 10 000 observations on private trips and 3 500 

business trips ─, allowed for a second demand model built as part of the Swedish national travel 

demand model system SAMPERS (Beser & Algers, 2001) spanning 670 domestic and 200 foreign 

zones and in use by the Swedish transport planning authorities after 1998. A still larger data set 

based on the 1994-2000 survey (notably including about 15 000 observations on private trips) was 

used in 2003-2004 for an update activity of the SAMPERS system, including its demand model 

component (Algers, 2004a). A fourth model, based on the 2005-06 survey, and specifically 

designed for HSR potential demand determination, is in progress
38

 and, in view of the first results 

(Algers, 2011), should be completed in 2011. 

 

The first three “official” milestones of Swedish intercity disaggregate demand model development 

all consisted in linear nested logit models for mode, destination and trip frequency choice. There is 

one exception to this, namely the form of the Headway parameter. As was found in previous 

modelling (Algers & Gaudry 1994) and in the 1994 Swedish Stated Choice Value of Time study, 

Headway has a decreasing marginal disutility. This was taken into account in the second and third 

milestone models by a piecewise linear headway formulation for that variable, in which the relative 

values of the pieces were constrained to those found in the 1994 Value of Time study (these 

relations are also found to hold in the 2008 Swedish Value of Time study). In addition to the non 

linear tests made on the first milestone model, a number of non linear form test variants were also 

developed for the third milestone models. 

 

The first effort, carried out at the Royal Institute of Technology (Algers & Gaudry, 1994), was 

based on the model estimated with 1984/85 survey data and focussed on the links among form, 

segmentation and heteroskedasticity. The second effort some 10 years later, as reported by the 

principal researcher (Algers, 2004b), was carried out on commission of the planning authorities in 

connection with the SAMPERS model update: it featured both modal nest and form sensitivity tests 

on the combined mode and destination model, but only for the main private travel purpose. 

 

We now consider these two waves of form tests in reverse chronological order, addressing 

statistical heteroskedasticity issues last. 

                                                 
38

 Author’s communication with the Staffan Algers of the Royal Institute of Technology who kindly authorized the use 

of Figure 2 and vetted this Section of the paper. 
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A. Form tests in a model of private trips (2003) 

As noted above in the Quebec-Windsor Corridor case documented in Table 3, it is often more 

difficult to model private trips than business trips, and all the more critical to do so that non-work 

trips constitute an increasing proportion of total trips in advanced continental European air markets 

where they often reached 50% of total air trips in the 1990’s. Still, form sensitivity tests of a model 

for such trips yielded the unambiguous results graphed in Figure 3. 

 

Those sensitivity tests, carried out in 2003 (Transek, 2003; Algers, 2004b) on a combined mode and 

destination choice model for the main private travel purpose with the 15 000 observations available 

for the SAMPERS update, only used generic Box-Cox transformations on the Cost and In-vehicle 

time variables, the base model (itself a variant of the updated milestone with respect to mode nests) 

already including a piecewise linear transformation on Wait time (defined as half Headway). As a 

result, the log-likelihood value increased from -26950 in the linear specification to -26512 (with a 

difference of 2 degrees of freedom), a massive gain of 438 units, seen on Figure 3, taken from 

Algers (2004b), where two local maxima occur
39

. As these local maxima were found in the tested 

range between 0 and 1 with coarse grid
40

 steps of 0.20, the global maximum had to be pinpointed by 

a finer grid search with steps of 0.05 indicating an optimal lambda combination of 0.40 for cost and 

0.15 for in-vehicle time. 
 

Figure 3. BCT tests on Cost and In-vehicle time, SAMPERS mode & destination choice model 

 
 

                                                 
39

 The current version was generously contributed by Algers. 
40

 In a mode and destination choice model where the mode choice components (the denominators) give rise to log sum 

terms used to explain destination choice, a grid can be performed by transforming the Cost and Time input variables 

and finding the corresponding log likelihood values. As the t-statistics of the transformed variable regression 

coefficients will per force be obtained conditionally upon the hypothesized values of the transformations, they are 

invariant to changes in the scale of those variables and automatically meet Spitzer’s (1984) objections to unconditional 

estimates. 
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B. Form and segmentation in models for business and private trips (1994) 

We noted already that the possibility of a substitution between form and market segmentation might 

raise doubts about the validity of such impressive results on the non linearity of utility and on 

results from eventual tests of non separability of Logit modal utilities as well. 

 

Market segmentation, the art of classifying a population into heterogeneous groups of homogeneous 

members, i.e. of accounting for the existence of subpopulations in samples, remained disjoint from 

functional form analysis for a surprisingly long time despite the fact that the role of segmentation 

has long been recognized in transportation demand analysis in the context of fixed (linear) forms 

(Hensher, 1976). Their linkage, despite its obvious appeal, was apparently explored systematically 

for the first time only in Algers & Gaudry (1994) as a variant of the first Swedish milestone model. 

 

Considering base model business and non business trip purpose specifications, these authors 

reported on the effect of segmentation criteria related as closely as possible to Income, often 

assumed to hide strong heterogeneity of preferences. For business trips, the assumption was, in the 

absence of data on the Income of individuals, that underlying preferences might be related to their 

Full Time Salaried Employee (vs Part-time or Independent worker) status; for private trips, the 

availability of Household Income in 95% of the sample argued, despite the reduction in the number 

of available observations, for a distinction between High (vs Low) household Income membership. 

The most conservative of their results, reported in Table 5 as answers to a question, require 

comment. 

 

When a variable, say Wait time, is segmented into components H and L as a function of the 

sampled individual’s household Income, two regression coefficients H and L replace the previous 

HL singleton but there naturally also exists two ways to specify the non linearity parameters of the 

two complementary Wait time segment variables: they can be transformed by a common Box-Cox 

power HL or by segment-specific powers H and L. In the latter case, other conditions additionally 

need to be met because the segments now contain subsets of zero-value observations (or at least of 

“holes”) which require a corresponding dummy variable to guarantee the invariance of the power 

parameter estimates to changes in units of measurement of the segmented component variables. 
 

Table 5. Non linearity vs income-related segmentation in the first milestone model for Sweden 

Algers & Gaudry (1994) Should non linearity AND segmentation be specified for 

Variable segmented or transformed the Business trip model? the Private trip model? 

1 Cost No 
include either, but not both: 

they are substitutes 
Yes 

include both: 

they are independent 

2 In-vehicle + Transfer time No 
include either, but not both: 

they are substitutes 
 

3 In-vehicle time Iff 
cost is non linear, 

then segment on time 

4 Wait time No include only non linearity No include neither 

Number of observations from 1984/85 survey 534 1758 

 

The choice is in practice between two formulations involving only one dummy variable because 

observations belonging to segments constitute complementary and disjoint subsets. It is between:  
 

(10-A) ( H , L , HL ) [common segment curvature specification], 

and   

(10-B) ( H , L , H , L , DUMMY) [specific segment curvature specification]. 

 

And it should be clear that (10-A) is more conservative than (10-B) because segmentation in 

principle applies as much to the curvature of the segment as it does to the associated segment 

regression coefficient. Although both specifications were tried for most of the variables of interest 
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in Table 5 (considered one at the time and jointly), the exhibited results, based on the best 

performing (joint) models in terms of log likelihood drawn only from (10-A) trials, are, in that 

sense, very conservative because form powers could naturally also be segment specific. 

 

Broadly, they indicate that segment-independent non linearity, detected by a Box-Cox 

transformation of a particular variable, and segmentation of that variable can be substitutes, as one 

would spontaneously expect from segmentations on say Distance related variables, but can also be 

complements, or even independent dimensions of model specification. At least for Cost and Wait 

time variables, there exists in these Swedish data “inherent” non linearity to be taken into account 

and the remaining issue is really whether non linearity might even be segment-specific. 

 

But does this argument carry over to the fragmentation of segmentation to the extreme extent of 

assuming that taste heterogeneity can be represented by a full distribution of individual weights for 

a given variable? 

C. Form and the randomisation of regression coefficients 

A challenge to the existence of non linearity is sometimes thought to be posed by the treatment of 

coefficients of the utility function as random instead of fixed, an old innovation in classical models 

(Swamy, 1970; Johnson, 1977, 1978), including transportation (Hensher & Johnson, 1979a) where 

the link with form was made early by Johnson (1979)
41

, recently taken up in Logit kernels under the 

« Mixed » Logit label, a formulation thought capable of approximating any random utility model 

(e.g. McFadden & Train, 2000). But do Mixed Logit models need form estimates? 

 

The atomisation of segments effected by randomisation of regression coefficients poses problems 

because the distributions of coefficients are unknown. Should the regression coefficients of Income, 

itself often log-normally distributed, follow an unbounded, or a doubly censored, normal 

distribution? Does the distribution of a gender variable follow a particular law with a regression 

component related to testosterone or estradiol, or to both ─ appearing as levels, ratios, or both with 

BCT? In Mixed Logit models, the information matrix
42

 does not have a closed form, which implies 

an undefined efficiency bound (Cirillo, 2005). Despite these design handicaps, Lapparent et al. 

(2009) have shown with long-distance data on three countries that BCT on Time, Cost and Access 

time were typically different from both zero and one in a Mixed Logit model. 

 

More importantly, the form objection can be turned on its head: Orro et al. (2005) have 

demonstrated with Box-Cox Mixed Logit model simulations (using two BCT, on Fare and Travel 

time) that the recent popularity of the Multinomial Mixed Logit may well be due to the fact that the 

true relationships are not linear and should have their curvature estimated rather than postulated, as 

many micro-economists might have long suspected: perhaps many specifications are more mixed up 

that mixed. Indeed, to extend (10-B), if k regression coefficients vary across individuals due to 

taste heterogeneity, why would their marginal utility trade-offs all be linear? Logically, should not 

the marginal utility across individuals be randomised with Box-Cox form parameters obtaining 

distributions as well, rather than be assumed constant, as demonstrated again by Orro et al. (2010)? 

 

In fact, concerning this attitude, one might guess that some other model parameters also determined 

jointly by estimation might have even better claims to distribution parameterisation than taste or 

form parameters: serial autocorrelation parameters, for instance, are likely to differ enormously 

                                                 
41

 The author was carefully pessimistic, at least in a technical sense, about prospects for this combination: “Unless more 

detailed results for the Murthy estimator are encouraging, it may be too much to expect the Box-Cox transform to work 

in more complex random coefficient models” (p. 1035). Murthy (1976) had suggested an estimator for the Hildreth-

Houck (1968) linear model with random coefficients but had provided no empirical estimates. 
42

 This important point concerning the matrix of expected values of the second derivatives of the Log Likelihood 

function was brought to our attention by Lasse Fridstrøm. 
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among individuals as they can capture stable idiosyncrasies that are notoriously difficult to account 

for with regressors, such as different discount rates. But inherent model misspecification brings us 

naturally to the modelling of the stochastic part of the specification. 

4.2. Form and non spherical distributions of residuals 

If segmentation and form are indeed distinct modelling dimensions, what else might present a 

confounding influence on form? Could form estimation then compensate for distributions of 

residuals violating statistical requirements of independence and constancy of variance?  

 

In both model classes defined by (6-A) and (6-B), the stated assumption of independence matters in 

principle as much as that of error variance homogeneity, but our emphasis will be on the latter even 

if both have a critical role to play in the determination of the standard errors of all parameter 

estimates, and hence on the reliability of their t-statistics. Unfortunately, the usual econometric 

proofs of bias or inconsistency of estimates obtained when these conditions are not met typically 

assume that the “fixed” part of the postulated model is correct. 

A. The diagnostic and correction of error interdependence and variance heterogeneity 

In reality, models are incorrect and both non homogeneity of error variance and interdependence 

among errors are more caused by model misspecification, and notably by the absence of relevant 

regressors, than by pure randomness. If for instance the true model is “dynamic” but has been 

specified as a static model, correcting for serial autocorrelation can indirectly improve the original 

formulation of the model, a result (Spanos, 1987-88) that should also hold, mutatis mutandis, for 

corrections of spatially autocorrelated errors and for error variance function corrections, such as 

[f(Z)t]
1/2

 for (6-A) and i[fi(Zi)n]
1/2

 for (6-B), further discussed below.  

 

In practice, however, meaningful models of variance determination are notoriously difficult to 

formulate intuitively, as the representation of our ignorance is inherently limited, in contrast to 

models of interdependence that are readily driven by the mechanics of time or space indices. In 

consequence, to this day models of heteroskedasticity remain very much the minority in the 

literature relative to models of interdependence. This low share hides some systematic differences 

between linear multivariate
43

 regression model classes, as implied by candidates to “first of” status 

in Table 6 where spatial autocorrelation (to be addressed superficially in Appendix D) is neglected. 
 

(i) formal testing for the presence of error interdependence or of error variance heterogeneity 

always came after ad hoc corrections in all Classical and Logit cases, if it came at all;  
 

(ii) ad hoc corrections for error interdependence came earlier (1949) than for error variance 

heterogeneity in Classical models (1961) but the reverse holds in Logit models where error 

variance
44

 corrections came late (1970) and began even later for interdependence, apparently 

at a moment of the 1980’s that is difficult to identify precisely. 
 

Table 6. Correcting nonspherical distributions of residuals in linear multivariate regression 

 Serial interdependence Nonhomogeneity of variance 

First ad hoc 

corrections 

First tests of 

presence 

First ad hoc 

corrections 

First tests of  

presence 

CLASSICAL 
Cochrane & Orcutt (1949) Durbin & Watson (1950) 

Durbin & Watson (1951) 

Anscombe (1961) Levene (1960) 

Goldfeld & Quandt (1965) 

LOGIT Gaudry & Wills (1979)45. mid-1980’s Cox (1970) Davidson & MacKinnon (1984) 

 

                                                 
43

 The seminal Generalized Least Squares idea attributed to Aitken (1934-1935) did not deal with a multivariate case. 
44

 The presence of heteroskedasticity in binary cases is easy to intuit because, with observations coded 0 or 1, the error 

term is necessarily [0 - pm*] or [1 - pm*], where pm* denotes the probability calculated by the model. Cox’s (1970) 

recipe of adding ½ to the choice probabilities, taken up by Domencich & McFadden (1975, p. 109), failed to spread. 
45

 Aggregate Logit. 
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Note in passing that some forms of heteroskedasticity correction can deeply modify the own and 

cross-elasticities. In (6-A) the presence of heteroskedasticity will, independently from the presence 

of autocorrelation, add a complex second term to the usual elasticity of y with respect to Xk 

(evaluated at samples means) ( , ) ( )XTOT k

TOT k TOT k kT X T X
 

  if the Xk regressor of interest also 

belongs to the heteroskedasticity correction function
46

: 
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In (6-B), for instance, mode-specific scale factors in i[fi(Zi)n]
1/2 

will modify the consistency with 

IIA of the original structure (4)-(5) because, even if [fi(Zi)n]
1/2

 = 1, the cross elasticity between a 

probability p(i) and a variable belonging to any utility function Vj will now depend on the j, as in: 
 

(11-B) 

 ( , ) , 1jk
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
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i jk X j j

j

X
P X P if



  


   . 

 

In single-equation case (6-A)-(6-D), heteroskedasticity is defined as {[f(Z)t] ≠ 1}. But the definition 

is more complicated in multiple-function case (6-B)-(6-E) where it may occur either across the 

observations pertaining to any given utility function equation, i.e. {[f(Zi)n] ≠ 1 for any i}, or across 

scale factors of the M equations {i. e. [i ≠ j] for any i and j}, or even across both observations and 

equations together. Note that setting all [fi(Zi)n] and all i equal to 1 corresponds to the so-called 

“standard Weibull” (Johnson & Kotz, 1970, p. 253) implicitly homoskedastic case. 

 

As the correction effected to obtain a constant variance requires dividing the regressand and all 

regressors, including the constant, by [f(Z)t]
1/2

 in the Classical case and by i[fi(Zi)n]
1/2

 for each 

representative utility function in the Logit case, correcting for heteroskedasticity always involves 

increasing the relative importance of (homoskedastic error) randomness in the specification, a 

fundamental matter in both Classical and Logit structures. It also involves specific risks of creating 

numerical outliers and collinearity to the extent that the division even by a strictly positive [f(Z)]
1/2

 

that avoids negative variances can sometimes create a relatively dominant observation ─ if the 

chosen specification for instance includes a ZH variable raised to a positive power. 

B. The presumed link between form of variables and variance stabilization 

To see why such a minority issue as heteroskedasticity could specifically matter here, note that 

maximizing Likelihood functions notably involves minimizing a function of calculated errors, such 

as sums of squares for (6-A)
47

.  

 

Classical regression. In this case, modifying the BCT of the dependent variable y in (6-A) directly 

affects the size of errors. Transforming the dependent variable is therefore quite different from 

transforming independent variables (Davidson & MacKinnon, 1993). For this reason, analysts have 

long used logarithmic transformations to obtain residuals of smaller variability than those obtained 

if y were linear, implicitly assuming that Case 1 of Figure 4 held for their problem rather than Case 

2 or 3. 

                                                 
46

 The detailed proof may be found in Tran & Gaudry (2010a). 
47

 If we ignore the Jacobian of the transformation of the dependent variable that appears in the likelihood function of y. 
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Figure 4. Influence of a logarithmic transformation on error variance 

 

Case 1: Reducing both nonlinearity and heteroskedasticity 

 

 

Case 2: Reducing nonlinearity and inducing heteroskedasticity 

 

 

Case 3: Reducing heteroskedasticity but inducing nonlinearity 

 
 

 

That figure illustrates that the logarithmic transformation, or more generally the link between 

nonlinearity of y and heteroskedasticity, is not simple because power transformations can reduce, as 

well as increase, error variance, and this without even considering BCT powers larger than 1. On 
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the same lines, it is sometimes erroneously believed that the BCT applied to y is always a variance
48

 

stabilizing transformation, and never the opposite. It would be more helpful to recognize that a BCT 

transformation on y necessarily affects both nonlinearity and error variance, as demonstrated in 

Figure 4, and that a second handle is required if the twin modelling targets of due model form 

estimation and simultaneous error variance stabilization are to be met. For that purpose, the 

structure of heteroskedasticity should be estimated jointly with the form of the model, for instance 

as specified
49

 in (6-D) and implemented in many documented and publicly available algorithms 

(Tran & Gaudry, 2008c; Tran et al., 2008). Two targets require two control instruments. 

 

Having one instrument per target
50

 may be more satisfactory than estimating BCT forms first and 

testing afterwards for their sensitivity to heteroskedasticity, as proposed earlier by Zarembka 

(1974), but some wisdom in application is still warranted because all regression variables are not 

equally linked to error variance. Although the use of BCT on any explanatory variables of a model 

can in principle have similar variance stabilization or destabilization effects as transformations of y, 

such effects will be mooted by the compensating regression coefficients
51

.  

 

Because of this tempering property of coefficients not constrained to 1 like the coefficient of the 

dependent variable, the use of BCT on the right-hand side variables of (6-A) with (6-D) is less 

directly linked to automatic error variance manipulation than the use of BCT on its left-hand side 

variable.  

 

Logit core regression. The same anticipation of weak linkages between the form of explanatory 

variables and implied hypothetical corrections for heteroskedasticity holds in Logit formulation (6-

B) with (6-E) where BCT are used only on right-hand side variables, a generalization that might as 

well have been called after Box & Tidwell (1962), who do not transform y, rather than after Box & 

Cox (1964), who do. 

 

If the modal choice probabilities were each transformed by BCT in (4), the situation would become 

comparable to that of (6-A). This occurs indirectly when an inverse transformation is used on the 

[exp(Vi)] quantities of the Logit, for instance in Multinomial Linear Inverse Power Transformation-

Logit (LIN-IPT-L) core expressions inspired by (6-C) and documented further in Section 7 below: 
 

(12-A)   1/
exp( ) 1  , 0 and 1m

m m m m mV


       , [BTG applied to Logit Quantity], 

(12-B)   1/
exp( ) 1 , 0m

m m mV


   , [BTG applied to Logit Quantity]. 

 

Because the transformations of choice probabilities that implicitly occur in the so-called Linear 

IPT-L are strictly
52

 equivalent to the direct transformation of y in (6-A), they could justify similar 

expectations
53

 pertaining to the effects of the indirect transformations on error variance. In the 

“Box-Tidwell Logit” formulation (6-B) however, anticipations are quite different: one expects weak 

linkages between changes in the form of explanatory variables and hypothetical corrections for 

                                                 
48

 This issue is related to, but distinct from, that of the transformation of the residuals to normality. Concerning this last 

point, Draper and Cox (1969) have shown that this transformation can be useful even in situations where no power 

transformation of a variable can produce normality exactly but Nelson and Granger (1979) contest this claim after 

testing 21 series and finding few cases where the distribution achieves normality. 
49

 This goes well beyond assuming that heteroskedasticity is proportional to one variable, as in Seaks & Layson (1983). 
50

 An urban transit and automobile trip demand application (Dagenais et al., 1987) is the source of Figure 4. 
51

 In classical regression, the coefficient of the dependent variable is constrained to 1. 
52

 This is readily understood if one remembers that the M dependent variables of the Multinomial Logit can be seen as 

resulting simply from a normalization of each by their sum: normalization is simply a scale factor.  
53

 The Pregibon (1980) binomial link used for aggregate (share) data, based on a direct Box-Cox transformation of the 

[exp(V1)] quantity that includes the Logit link as a special case, also involves a transformation of the choice probability 

that could make it difficult to modify form without significantly affecting error variance. 
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heteroskedasticity. The tests carried out on the Swedish “Box-Tidwell Logit” model just discussed 

in Table 5 entirely confirm this anticipation, as we presently recall. 

C. Form and heteroskedasticity in the Swedish models for business and private trips 

A reasonable expectation of misspecification in that model as specified had to do with the difficulty 

of taking into account in the construction of explanatory factors such as overnight stopping costs 

related to trip length, the nature of which might have induced higher error variance. 

 

It was consequently assumed, for each trip purpose p and observation n, that the correction factor 

i[fi(Zi)n]
1/2

 be equal to 1 if the distance covered by the trip was up to 300 km, equal to p2 if it was 

in the 301-600 km range, equal top3 if it was in the 601-900 km range, andequal to p4 for trips 

beyond 900 km. This yielded 3 new parameters by trip purpose model, each linked to distance but 

independent from the alternatives. Of these 6 adjustment factors, only the p3 of business trips was 

found to be significantly lower than and distinct from 1; this significance also decreased the 

importance of segmentation but had no discernable effect on the BCT estimates or on elasticities. It 

was concluded that this result made sense but was nothing to write home about, as the reader might 

have anticipated all along from the above discussion on “Box-Tidwell Logit” specifications. This is 

in line with Schnetzler (1996, 1998), who convincingly argues that heteroskedasticity is generally 

secondary unless socio-economic factors really matter. 

D. Form and autocorrelation 

To the extent that form and heteroskedasticity are also linked to autocorrelation, it is natural to raise 

the issue of their joint determination and to explore the effect of autocorrelation in the 

determination of form. 

 

It was explicitly raised in a time-series model of transit and automobile demand consisting in 3 

equations of type (6-A) where due weight was given to multiple-order autocorrelation and to 

heteroskedasticity (6-D) considered jointly. The authors concluded (Dagenais et al., 1987, p. 460): 

“The BCT can be shown to dominate either the linear or the log form unconditionally, i.e. 

independently from whether one simultaneously takes into account [various forms of] 

heteroskedasticity and [of multiple-order] autocorrelation.” 

 

In Logit models of type (6-B), the addition of (1
st
 order and 12

th
 order) autocorrelation to an 

aggregate
54

 binomial transit trip mode of payment model (Gaudry & Wills, 1979) made no real 

difference to the optimal BCT estimates, found in that case to lie numerically close to the 

logarithmic case but to differ statistically very little from the linear values.  

 

We could not find examples of applications with discrete models where serial (or more general, for 

instance spatial) autocorrelation were estimated simultaneously with form parameters, despite the 

taking into account of serial autocorrelation since about 1985, as documented in surveys (Azzalini, 

1994; Jackman, 1998), notably in Mixed Logit models where the specification of residuals is 

becoming extremely sophisticated (Ortúzar, 2006).  

 

One or more of these model dimensions might smell of diminishing returns to complexity, but 

which one? In particular, how much does it matter in practice that BCT values be this or that and 

trade-offs among modal characteristics
55

 not be constant? More generally in fact, what values 

should BCT parameters obtain and can they be made sense of? 

                                                 
54

 It is of course known that market share models will do well in time-series estimation in the presence of population 

heterogeneity (Givon & Horsky, 1978). 
55

 In the forthcoming four Tables 7-11, we deal only in BCT cases. Binomial urban cases have been explored with cubic 

spline (Gillen & Cox, 1979) and simple power (Koppelman, 1981) functions; a meticulous Air-HSR example has been 

developed with polynomials (Blayac & Causse, 2001). 
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5. Forms interpreted: “Cost damping” and attitudes to Risk or Distance 

 

The cost damping query. The subject of anticipated BCT form values can be conveniently 

addressed as an answer to the first question recently asked by the United Kingdom Department for 

Transport about the existence of absolute Cost damping, defined as “a feature in some models that 

the impact of Cost and/or Time is reduced for longer journeys” (Daly, 2008, 2010). 

 

A second question arises about the existence of relative damping of Cost and Time impacts based 

on the empirical observation that “Value-of-time studies in the transport sector most often find that 

the Value of travel Time in money terms increases with the length of the trip” (Daly, 2010, p. 5), as 

confirmed in the latest meta-analysis (Abrantes & Wardman, 2011, Table 15). 

 

Cost damping and form in step. We relate the damping claims to BCT form values in five steps 

corresponding to sub-sections: 
 

i) First, we define the required Demand sensitivity measures in question and show that the existence 

of negatively sloped curves, caused by diminishing marginal utility, is analytically independent 

from that of BCT applied to model variables, as they can in principle take any value without 

affecting the key negative sign property of demand slopes for normal goods.  
 

However, actual form parameter estimates determine whether in fact damping occurs or 

amplification, its opposite, prevails. Damping or amplification occurs for some defined value 

ranges of the relevant BCT, domains separated by a border where independence holds. 
 

But, as Demand slope sensitivity depends on the form of many transport variables, we start our 

examination of value ranges with LOS variables, distinguishing between absolute and relative 

damping and drawing from three tables containing survey results.  
 

ii) Second, turning to actual BCT estimates for Time and Cost variables of intercity passenger 

models in Table 7 (and of freight models in Table 9), we find that they are generally consistent 

with the existence of absolute Time and Cost damping. By contrast, in urban passenger models 

found in Table 8, Time amplification typically occurs concurrently with Cost damping. This 

finding establishes the existence of a fundamental difference between intercity and urban travel. 
 

iii) Third, in a similar analysis of rates of substitution between Time and Cost variables of all 

models, relative damping occurs in all tables (7-8-9) with a couple of exceptions. The frequency 

of damping/amplification can be plotted (Figure 5) or categorized (Figure 7) to focus on the 

specifics of the small minority of amplification cases. 
 

iv) Fourth, overall, we find the systematic flexibility afforded by BCT to be well adapted to 

answering the questions raised on LOS variable sensitivity. Interestingly, the absence of absolute 

and relative sensitivity in popular structures based on log-sum dependent Total demand models 

and Linear Logit mode choice models requires that critical BCT borderline values between 

damping and amplification hold. Such values imply a very special behaviour of the Transport 

decomposition (Figure 6) of a movement along a demand curve and, we suspect, of traditional 

microeconomic decompositions between Income and Substitution effects as well.  
 

v) Fifth, to gain some insight into atypical (absolute and relative) amplification cases identified by 

BCT values, we use in Table 10 new approaches, focusing on Logit models enriched by the 

multiplication of LOS factors (raised to a BCT power) either by a Risk attitude term (using a 

simple power) defined under Rank Dependent Utility (RDU) postulates or by a Distance attitude 

term (also raised to a simple power). 
 

The latter interaction allows for a clear distinction to be made in gross BCT damping and 

amplification power results between an element measuring “attitude to Distance” and another 

“attitude to Outcome” proper, giving rise to a “calculus of gross and net effects” of Distance.  



 38 

5.1. Form parameters and Modal demand slopes under Certainty (UC) 

For any demand function, sensitivity with respect to Price or Time can be expressed as a partial 

derivative or slope (with units), or as an elasticity (without units). Considering the full Demand 

formulation (1)-(2) applied in (7-A), we state the better known elasticity measure first but proceed 

to discuss sensitivity with the slope measure. Answering the query requires defining damping and 

amplification, notions that also involve second derivatives. We now assume that LOS are certain. 

 

The classical elasticity of the Demand for a particular mode, such as rail, with respect for instance 

to its Fare
56

, is expressed in a QDF framework in the familiar way (e.g. Oum et al., 1990, p.7) as the 

sum of elasticities for total traffic and mode split, for instance with a Box-Cox Logit core:  
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where, to be precise
57

, the last right-hand side (RHS) expression is the elasticity of the rail Mode 

share (or choice probability) Prail with respect to the rail Fare, and the first RHS one is the elasticity 

of the Total demand TTOT with respect to U multiplied by elasticity of U with respect to that Fare.  

 

To study the sensitivity of rail demand, we first isolate the partial derivative and collect terms: 
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where U, associated with the coupling term U, is assumed to be positive and, all other terms being 

necessarily positive except for rail which duly gives the negative slope sign, Fare sensitivity 

depends on three variables affected by corresponding BCT exponents [F, U, TOT]. 

Characterization of damping and amplification combines first derivative (13-B) with results from 

Table 1 or from the second derivative 2 2

,( )rail m FareT X  , where ,m XX  denotes the rail Fare:  
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namely, considering without loss of generality 0TOT   and the log sum case 0U  : 

 ,( 2)2 2
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
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 which, for the domains of relevance for our purposes, has the property that, if  

  1 then  2 2 3

, , ,( ) (1 )m m X m X m X m mT X X P T    , i.e. decreases with ,m XX  

  0  then  2 2 2

, , ,( ) (1 )m m X m X m X m mT X X P T    , i.e. decreases with ,m XX  

 1  then ,m m XT X  in (13-B) is independent from ,m XX  and 
2 2

,( )m m XT X  does not exist 

0,5   then  2 2 1,5

, , ,( ) (1 )m m X m X m X m mT X X P T    , i.e. increases with ,m XX  

2   then  2 2

, ,( ) (1 )m m X m X m mT X P T    , i.e. is an inflexion point, constant with ,m XX  

3   then  2 2

, , ,( ) (1 )m m X m X m X m mT X X P T    , i.e. increases with ,m XX  

 

                                                 
56

 We assume that the LOS variable appears only in own-mode representative utility function and will not develop the 

symmetrical expression for Time sensitivity. For an analysis of conditions under which choice and demand elasticities 

can be identical, see Smith et al. (2010). 
57

 Of all possible cases considered at the end of Appendix B, the combination (43-G)-(43-H) suffices at this point. 
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The Fare exponent (F - 1), and by symmetry that of Time (T - 1) if the demand slope is 

formulated with respect to Time, as well as the exponent of Utility U and the exponent of total 

market size TOT, have no effect on the sign of slope (13-B). But they will modulate it, i.e. make it 

sensitive to the level of Cost (or Time) and to that of Utility U or total market size TTOT. BCT values 

can increase, decrease, or have no effect on, the Demand slope. 

 

Because the “Cost damping” query is formulated in terms of Time and Cost factors, we start the 

discussion of the role of BCT power exponents of the four candidate variables with the level of 

service (LOS) variables, momentarily neglecting the Utility and Total Market size (UT) variables. 

5.2. LOS form parameter values and absolute damping in three market types 

Starting with the value of their exponents, found in Columns 2 and 3 of Table 7 for intercity trips, 

the LOS sensitivity of the slope will be said to exhibit: 
 

  Effect of ∆X on slope curvature 

(13-D) absolute amplification  →  if (LOS - 1) > 0,  i.e. when LOS > 1 

(13-E) absolute independence \\  → \\  if (LOS - 1) = 0,  i.e. when LOS = 1 

(13-F) absolute damping   →  if (LOS - 1) < 0,  i.e. when LOS < 1 
 

which simply means that “Cost damping” as understood in the query above is defined in (13-F) as a 

slope that increases in absolute value, but at a decreasing rate. Also, following the same logic, “Cost 

amplification” is defined in (13-D) as a slope that increases in absolute value, but at an increasing 

rate. Naturally, independence is the borderline case (13-E) of a slope that is constant with LOS.  
 

We observe in Models 1-7 and 10-16 of Table 7
58

, where the Logit utility functions are defined as 

in (6-B), that absolute damping (F or T smaller than 1) occurs in all 28 possible values but one, 

found in Model 2, where the Time exponent value is 1,80. Absolute Fare and Time damping are 

therefore both pervasive. This is consistent with some analysts casually “finding that the logarithm 

of variables provides better estimation results without necessarily relating theses results to either 

perception transformations or to marginal utility (Quarmby, 1967; Stopher & Lavender, 1972)”, as 

pointed out long ago by Koppelman (1981). 

 

But the overall prevalence of absolute damping (13-F) over amplification (13-D) is not limited to 

intercity passenger models of Table 7, as the urban examples listed in Table 8
59

 and the freight 

examples in Table 9
60

 indicate: three quarters of the cases exhibit LOS damping in these two new 

tables, with the exceptions found in urban markets where Time amplification always occurs, as can 

be seen by the braided boxes in Column 2 of Table 8. This is consistent with, and generalizes what 

may be called, the “urban amplification” finding of Levin et al. (1980) “that car drivers and bus 

riders overestimate travel time and specifically that such overestimates increase with trip duration”, 

as again summarized by Koppelman (1981, p. 131). 
 

                                                 
58

 Table 7 does not include cases estimated with very coarse grids and by hand even when they appear to display both 

absolute and relative damping for the modes considered, such as Car and Public transport in Vtric et al. (2007). 
59

 Table 8 does not include the study on the temporal stability of discrete choice models by McCarthy (1982) where the 

functions estimated with BART data appeared linear whether one used two modes (Car and Bus, before BART) or a 

more complex break-down of the public mode into 3 sub-categories (after BART). This finding remains an exception 

and we could not determine from the paper whether peculiarities of local pricing (such as bus Fare varying over a very 

narrow domain) could explain the result. 
60

 Table 9 does not include the model used by BVU (Schneider, 2003; Selz, 2004) to produce freight forecasts for the 

German Federal Transport Infrastructure Plan (FTIP) of 2003 because BVU, despite the public nature of the German 

FTIP, refused to supply information on the values of the two BCT used for Time and Cost variables. Neither was it 

possible to find out if BVU, as stated in Selz’s presentation (2004, page 20), is really using Modal utility functions 

without intercepts, in which case their BCT estimates would not be invariant to units of measurement of the variables 

(Schlesselman, 1971). In some past work with intercity passenger Logit models (Kessel et al, 1986), BVU did not use 

any modal constants. 
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Table 7. BCT estimates for Induction, Time & Cost variables in intercity passenger models 

Models* Column 1 2 3 4  

National Utility Logit expense specification Source in this paper:  

results obtained from (Domestic only, except 9) Purpose U Time Fare Time-Fare) 
1. Canada 1972 (4 modes) All 0,05 -0,05 -0,26 0,21 Table 2 

2.-3. Quebec-Windsor Corridor 

        Canada 1987 (4 modes) 
Business 

Other 

--- 1,80 0,28 1,52 Table 3, Col. 2; see (1) 

--- -0,12 -0,29 0,17 Table 3, Col. 5; see (1) 

4.-5. Quebec-Windsor Corridor 

        Canada 1991 (4 modes) 
Business 

Other 

--- 0,56 0,25 0,21 Table 4, Col. 2 

--- -0,10 0,31 -0,41 Table 4, Col. 4 

6. Sweden 1984-85 (4 modes) Other --- 0,15 0,40 -0,25 Figure 3 model 

7. Germany 1979-80 (3 modes) All --- 0,24 0,24 0,00 Figure 10 model 

  Utility Logit rate specification Source 

Purpose U Speed Price Distance Gaudry et al., 1994 

8. Canada 1976 (4 modes) All -0,08 0,15 1,63 -0,25 T.B.1, C3; T.B.2, C.6 

9. Germany 1985 (3 modes) All 0,41 6,39 -2,20 -0,15 T.3, C.6; T. 2, C.3; 

 Multinational (3 modes) Utility Logit expense specification  

(Domestic and cross-border) Purpose U Time Fare Time-Fare) Mandel, 1992 

10. Germany 1979-80 (3 m.) All ---    Tableau 3.2.1; see (2) 

 Gaudry et al., 1998 

11.-13. France 1993-1994, 

Cross-Channel: see (3) 

Business 0,33 -0,62 -0,62 0,00 App.2, C.5; App.1, C.1 

Vacation 0,12 0,53 0,53 0,00 App.4, C.5; App.1, C.6 

Private 0,31 -0,33 -0,33 0,00 App.3, C.5; App.1, C.4 

 Mandel, 1999 

14.-16. Surveys (see 4) in all 

international German 

airports (circa 1991) 

Business --- 0,40 0,40 0,00 
Table 2; or Table 3-10 

in Gillen et al., 2001 
Vacation --- 0,64 0,01 0,63 

Private --- 1,00 0,70 0,30 

* All use discrete mode choice data, except for 1, 8 and 9 which are based on aggregate mode share data, and Revealed 

Preference (RP) data, except 4 and 5 which are based on face-to-face Stated Preference (SP) data. None use computer 

assisted telephone interviews (CATI).  

(1) If one adds time by car to all Modal utility functions, as done in Column 3 and Column 6 of Table 3, the resulting 

Generalized Box-Cox specification differs from the Standard Box-Cox Logit specification used in all other models: we 

therefore choose Column 2 and Column 5 cases. 

(2) The KONTIFERN data for Germany and abroad, the same as used in Model 10, were aggregated into modal shares to use an 

available algorithm which also allowed for Dogit and Inverse Power Transformation-Logit (see Equation 12) specifications 

applied to shares. 

(3) Includes United Kingdom International Passenger Surveys (1991 and 1996) and Civil Aviation Authority (CAA) data sets 

and about 13 500 trips from Germany (Mobility’95), as well as trips for Norway and Sweden. The mode choice models are 

estimated with 77 568 observations (business, 22 579; private, 17 477; vacation, 37 512). The parameters were used for the 

first version of VACLAV-VIA (Schoch, 2000, 2003). A subset of relations within the Czech Republic pertains to 4 modes. 

(4) About 238 000 trips. The data were checked by D. L. R. (Cologne). Equality of the BCT was imposed for business trips 

because the increase in Log Likelihood with distinct Time and Cost was slightly less than 2,33.  

5.3. LOS form parameter values and relative damping in three market types 

But, should there instead be restrictions or strong expectations based on marginal rates of 

substitution among modal characteristics such as Time and Fare? The value of time (VOT) obtained 

by dividing Time and Fare derivatives, each obtained in turn from (13-B), is simply: 
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where, again, Time and Fare variables are always positive independently from the values or signs of 

their exponents, respectively (T - 1) and (F - 1). It seems that theory puts no more particular 

constraints on the ratios of BCT than on the levels of BCT for any particular variable
61

. 

 

                                                 
61

 The flexibility of the BCT form avoids the fixed form dilemmas of old where the marginal rate of substitution had to 

be estimated either with fixed ratios of Time and Cost regression coefficients or with constant values of these 

coefficients provided by a given functional form (e.g. Gronau, 1970, Ch. 5). 
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What can then be made of the important second part of the query, relating sensitivities to trip length 

or Distance? To address it, we distinguish between two ways of giving a role to Distance and 

consider the following competing general Expense and Rate specifications of modal characteristics 

in representative utility functions: 
 

(15-A) fiE (Farei, Timei), [Expense specification] 

(15-B) fiR (Pricei, Speedi, Distancei), [Rate specification] 
 

where the money Price per unit of distance is obtained by dividing the Origin-Destination (OD) 

Fare by Distance from origin to destination and the time price per unit of distance, Speed, results 

from a similar operation applied to OD Travel time. 

 

An explicit choice between Expense and Rate specifications. If the optimal form of the utility 

function is logarithmic, (15-A) and (15-B) are indistinguishable and yield identical log-likelihood 

values; otherwise, they are distinct but not nested. When BCT are used, it is very often the case that 

the Rate specification dominates the Expenditure specification both in terms of log-likelihood 

(applying the mechanics of non nested comparisons
62

) and in terms of muticollinearity. In that 

sense, the choice between an Expense and a Rate specification is the first to be made as one 

specifies representative utility functions. But if an Expense specification has been estimated, it is 

always possible to rewrite the explicit Expense estimates in implicit Marshallian Rate metrics. 

 

The Expenditure specification, normal in Logit models, is still the most frequent in practice, but the 

Rate specification is closer to micro-economic basics where the size of the purchased basket 

depends on Income and its composition depends on Prices: in (15-B), Distance seems to play a role 

similar to that of Income, with money and time unit prices determining basket mix. In that sense, it 

functions as a “Time-income” proxy (Dagenais & Gaudry, 1986) driving trip lengths while the 

modal characteristics modify modal mix. But we shall see below that it may have another meaning. 

 

Bringing out the latent role of distance in Expense specifications. Some insight into the damping 

issue can be gained from isolating from estimated parameters of (14-A) the implicit effect of 

Distance, a rewriting that was not necessary to define absolute damping above. It simply 

decomposes the Fare as a product of Price and Distance and the Time as a product of the inverse of 

Speed and Distance: 
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where the estimated parameters from (14-A) are left unchanged by the rewriting, VOT sensitivity in 

(14-B) is a function of the arithmetic difference between the originally estimated Time and Fare 

powers (T – F) assigned to Distance, and can be said to exhibit: 
 

  Effect of ∆X on Value of Time   

(15-C) relative damping  ▲ if (T - F) > 0,   

(15-D) relative independence ═ if (T - F) = 0,   

(15-E) relative amplification  ▼ if (T - F) < 0,  
 

which simply means that “relative cost damping” as understood in the query
63

 above is defined in 

(15-C) as a VOT that increases with Distance. Also, by the same logic, “relative cost amplification” 

is defined in (15-E) as a VOT that decreases with distance. Naturally, relative cost independence is 

the borderline case (15-D) of a VOT that is constant with Distance. 
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 Basically building, at least conceptually, an artificial model that includes the variables from both specifications and 

afterwards comparing the nested specifications (15-A) or (15-B) to the artificial one formed with their union. 
63

 It may seem bizarre to call damped a ratio that increases. One could reverse labels (15-C) and (15-D) and apply the 

damping notion to the ratio itself but that would modify the wording of the UK Department for transport query. 
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To find out if relative cost damping occurs in practice, we presently consider (T - F) estimates not 

only in intercity passenger models but also in urban passenger and in freight models. It will be clear 

that Daly’s observation ─ that the VOT measured by (14-A) typically increases with trip length ─ 

holds
64

 in the great majority of cases. 

A. Relative cost damping in long-distance passenger markets 

In Column 4 of Table 7, the exceptions to the presence of relative cost damping are for non-

business trips in the Stated Preference survey made in the Quebec-Windsor Corridor in 1991 

(Model 5) and for the Swedish long-distance travel (Model 6). For Germany, where trips are the 

shortest among the 4 sampled regions, Model 7 with 1979-1980 discrete RP data (to be used below 

in Figure 10) yields a null difference because there was too small a statistical gain to relaxation of 

the common BCT for Time and Fare equal to 0,24, i.e. equal to the fourth root of these variables. 

 

In that case, the implicit VOT calculated from (14-A) does not vary with trip length but still varies 

with the reference levels of the variables and with the size of increments considered from a given 

reference Fare or Time: absolute damping occurs, but relative damping cannot occur. However, 

when the same data are aggregated into shares in Model 10, both Time and Cost BCT are 

significant (a third BCT on frequency, not shown in Table 7, is jointly estimated at 0,99) and 

relative damping in fact obtains. 

 

The explicit role of distance in Rate specifications. What happens if Distance is used as an 

explicit regressor within a model directly formulated in accordance with the Rate specification? 

 

To answer this question, we use a comparative study of Canadian and German intercity passenger 

markets not mentioned above (Gaudry et al., 1994) where the specifications of the national models 

were almost identical within a QDF-type framework built with aggregate 1976 data for Canada and 

1985 data for Germany. In the Generation-distribution
65

 part of the framework summarized in Part I 

of Table 22, the models of type (6-A) took heteroskedasticity and spatial or more general 

autocorrelation into account. In the mode choice part, from which the coupling term (3) arose, 

specification (15-B) was chosen after comparisons with (15-A) and, in both mode choice models, 4 

BCT were estimated
66

, including one for Distance and the others for Price, Speed and Frequency of 

service: results are summarized as Models 8 and 9 of Table 7. 

 

In many samples, notably freight ones, modal OD distances Dm vary too little among the modes to 

be interestingly distinguished and the default common measure D used per force must be treated as 

a socio-economic variable; all modal coefficients of Distance mk can then be identified only if 

distinct BCT are used for each and all of the D variables inserted in the M utility functions: in the 

linear case, only differences with respect to a reference alternative can be estimated. However, in 

the Canada-Germany passenger model comparison, the Dm did vary enough within each country for 

generic regression coefficients to be estimated, with or without help from BCT. The coefficient of 

Dm was negative in both countries with a generic BCT equal to -0,15 for Germany and to -0,25 for 

Canada. Such comparable Canada-Germany results appear to confirm the interpretation of Distance 

as an “Income” term
67

 reducing the levels of all modal utilities as trip length increases, but reducing 

them at a decreasing rate implied by the negative powers associated with Dm (case (13-F)). 

                                                 
64

 We do not discuss the standard errors of estimates: the rare slightly negative differences may not differ much from 0.  
65

 For an urban Generation-Distribution example comparing (15-A) and (15-B) specifications for two modes, see 

Dagenais & Gaudry (1986). 
66

 For reasons stated above concerning “Box-Tidwell” Logit models, heteroskedasticity tests were deemed unnecessary. 
67

 Note that, for some long trips in Canada (e.g. Halifax to Victoria), going by plane instead of by land modes (a 6200 

km road distance) can save a week of your life in each direction. 
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B. Relative cost damping in urban passenger and intercity freight markets 

After noticing Time power values systematically above 1 in Table 8, it does not come as a surprise 

that the difference between estimated Time and Fare powers (T – F) shown in Column 4 is then in 

effect always positive (implying relative damping or a VOT rising with distance).  
 

Table 8. BCT estimates for Time & Cost variables in discrete RP urban Logit passenger models 

Column  1 2 3 4  

Time and Cost terms; expense specification Source 

Sydney (2 modes) Purpose Tww Tveh Fare Time-Fare) Hensher & Johnson, 

1981; see (2) CBD trips (car and train)  see (1)   

17. Northern suburbs (1971) Work 1,000 0,50 0,00 Table 1, Col. 1 (k = 001) 

Washington, DC (2 modes)  Koppelman, 1981 

18. City-wide (1968) Work 2,57 0,56 2,01 Table 2, Col. 6 

Paris region (6 modes)  Gaudry, 1985 

19. City-wide (1976) Work 1,000 0,50 0,00 Table 3 

  Hivert et al., 1988 

20. Orly airport origin (1986-1987) Private 1,08 1,08 0,42 0,66 Model 5.2, p. 46 

Paris region (2 modes)  Lapparent, 2004 

21. City-wide (1997, 11 variables) Work 1,19 1,19 -0,89 2,08 Table 4.8, p. 135 

Santiago de Chile  Pong, 1991; and 

Gaudry, 1994 A-1. CBD corridors (9 modes) 

22. Las Condes & San Miguel Work 0,13 1,37 -0,56 1,93 Series I-B-G; see (3) 

B-1. City-wide 1991 (11 modes)  Parra Granifo, 1995 

23. Peak AM trips 7:30-8:30 Work 0,32 1,000 0,82 0,18 Table 4, Col. 1; see (4) 

24. Off-peak AM trips 10:00-12:00 Work 0,31 1,000 0,69 0,31 Table 4, Col. 2; see (4) 

25. Peak AM trips 7:30-8:30 Study 0,21 1,000 -0,01 0,20 Table 4, Col. 3; see (4) 

Time terms and [Cost/Income] ratio (see (5)) term; expense specification Pong, 1991, and 

Gaudry, 1994 A-2. CBD corridors (9 modes) Purpose Tww Tveh F/s Tveh-F/s) 

26. Las Condes & San Miguel Work 0,12 1,30 0,55 0,75 Series I-A-G 

  Gaudry et al., 1989 

27. Las Condes (1983) Work 0,44 1,56 0,23 1,33 Footnote 3 p. 156 

28. Adding San Miguel (1985) Work 0,33 1,57 0,60 0,97 Footnote 3 p. 156 

B-2. City-wide 1991 (11 modes)  Parra Granifo, 1995 

29. Peak AM trips 7:30-8:30 Private 0,46 0,53 -0,09 Table 4, Col. 5; see (6) 

30. Off-peak AM trips 10:00-12:00 Private 0,54 0,64 -0,10 Table 4, Col. 6; see (6) 

31. Off-peak AM trips 10:00-12:00 Study 1,00 0,25 0,75 Table 4, Col. 4; see (6) 

Time terms and [Income - Cost] difference (see (7)) term; expense specification  

Paris region (2 modes) Purpose Tww Tveh (I-F) Tveh-(I-F)) Lapparent et al., 2002 

32. City-wide (1997, 5 variables) Work 1,17 1,17 -0,03 1,20 M-2 model; see (8) 

  Lapparent, 2002 

33. City-wide (1997, 5 variables) Work -0,05 1,11 0,07 1,18 M-2 model, p. 27; 

  Lapparent, 2003 

34. City-wide (1997, 16 variables) Work 1,07 1,07 0,85 1,92 Table on page I; see (9) 

(1) The value 1,000 denotes an untransformed variable appearing linearly in a model.  

(2) In a previous analysis based on a single suburb subset (Hensher & Johnson, 1979b), the authors had found an optimal BCT 

value of 0,05 close to the logarithm but with a linear-probability model, not a Logit model. 

(3) The income measure used is the net hourly wage rate. 

(4) The Time variable denotes walk time. 

(5) The Fare is divided by the net hourly Wage rate, in accordance with the Train-McFadden (1978) specification. 

(6) The Time variable is a generalized time with weight of 1 for In-vehicle, 2 for Walk and 4 for Wait times. 

(7) The Net Income term is obtained by subtracting Cost from Income. 

(8) In Model 32, an equality constraint is imposed on the coefficients of total Time elements; it is relaxed in Model 33. 

(9) In Model 34, 8 socio-economic dummy variables are added to the specification of Model 33. In consequence, the BCT on 

the Net Income variable becomes 0,85, i.e. almost linear and not significantly different from 1.  

 

It is negative (implying VOT falling with distance) only in Models 28 and 29 where generalized 

time replaces and includes in-vehicle time. It might be that the low power values (in the range from 



 44 

0,12 to 0,44) associated with walk and wait times when these variables are allowed specific BCT 

then dominate the In-vehicle time component of the generalized time construct, due to Parra 

Granifo (1995). 

 

Table 8 also makes it possible to see how relative damping is affected by model specification: 
 

i) Cost to Income specification: the table contains results of a thorough comparison between the 

specification of the goods/leisure trade-off as ratio of cost to income (Train-McFadden, 1978) in 

Model 26 and a more general specification where each term is self-standing in Model 22. The 

results from this unpublished work (Pong, 1991; Gaudry, 1994) on the high quality 1983-1985 

Santiago de Chile data showed that the ratio specification 26 is easily rejected in favour of the 

unconstrained and more general specification 22 for all forms except linear ─ but that, among 

variants of 26, this linear case is completely dominated by free BCT form specifications that also 

happen to imply more reasonable VOT (not shown) than the single value imposed by the linear 

form. The Train-McFadden specification is preferred only if the choice is only between linear 

specifications of Model 22 and 26, where it is never the right form. 
 

If the Train-McFadden ratio specification is strongly rejected, what then happens to relative cost 

damping? The comparison between results for the same data set (Las Condes & San Miguel), 

shown in bold for Models 22 and 26 (Series 1-A-G and 1-B-G), demonstrates that relative cost 

damping present in all listed urban models is here independent from whether one uses the rejected 

goods/leisure trade-off formulation or the freer specification more consistent with the data. 
 

ii) Net Income: Table 8 also contains a comparison of the effect of adopting the Net Income 

formulation of the goods-leisure trade-off in Model 32 after having tried the usual specification in 

Model 21: the presence of relative damping is again unaffected by this change, as it is by freeing 

in Model 33 the constraint on the components of total time, or by increasing the number of socio-

economic dummy variables in Model 34. In the latter case, this addition of “market segments” 

represented by 8 additional socio-economic factors almost linearizes the BCT on Net Income, as it 

should, but has no effect on the existence of relative Cost damping.  

 

Table 9 presents some results for freight, all showing the presence of relative Cost damping in 

Models 35-37 estimated with an expense specification of the utility functions. In Model 38, the 

BCT is applied to a Distance variable assigned only to container and rail (truck is the reference). 
 

Table 9. BCT estimates for Time & Cost variables in intercity freight Logit models 

Column 0 1 2 3 4  

Discrete SP data Lateness, Time and Cost terms; expense specification Source 

Norway (2 trucking modes) Late Freq Tveh Fare Time-Fare) Fridstrøm & Madslien, 

2002 Own account or for hire (1992) See (1)  

35. All commodities 0,536 --- 0,198 0,005 0,193 Table 1; see (2) 

France-Spain border (2 modes)  JLR Conseil & Stratec, 

2005, p. 48 36. Bulk commodities (2005) 1,000 1,000 0,700 0,100 0,600 

37. Manufactured goods (2005) 1,000 1,000 0,800 0,400 0,400 Table p. 48; see (3) 

Aggregate RP data   Rate specification  

France-Spain border (3 modes)  Speed Price Distance Gaudry et al., 2008 

38. All commodities (1999) --- --- 1,000 -1,83 6,49 Annex 3, Table 11; see (4) 
(1) The value 1,000 denotes an untransformed variable appearing linearly in a model. 

(2) The late delivery risk variable had a positive sign in the linear model specification. In the optimal model, a statistically 

significant negative sign obtains and the BCT equals 0,536. 

(3) Also found in Blardone (2007). 

(4) The road is the reference mode: Distance therefore appears with a common BCT in the utility functions of the two remaining 

modes: combined (container) road-rail and traditional rail. 

 

Damping and amplification frequency. Collecting information from Tables 7-9 makes it possible 

to define cross-fields in Figure 5 where higher frequencies drawn from the sample of all split 
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models (intercity passenger and freight, urban passenger) sharing the Expense specification can be 

represented by modulating the darkness of areas. We find that relative and absolute damping 

dominate in all market types except for urban areas where the value of T systematically exceeds 1 

and always implies absolute amplification.  
 

Figure 5. Main concentration of BCT estimates for Time & Fare variables (ex Tables 7-9) 
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BCT flexibility and the cost damping query. All things considered up to this point, a belief in the 

existence of Cost damping, at least in the strict relative sense of the expression related to Distance 

but also in the absolute sense, is well served by the monotonic variable-specific flexible non 

linearity of the BCT: the belief requires demand function slopes (sensitivities) that are changing 

with the importance of LOS trip characteristics, and implicitly with distance, but specifically for 

each variable. In addition, BCT have facilitated our empirical discovery that Time amplification 

occurs in urban markets, in contrast with intercity markets, without affecting the general presence of 

relative damping. Appendix A implies that using simple powers of variables instead of BCT to 

achieve the same ends would not be so simple a matter. 

5.4. Other “damping” factors and the decomposition of price effects 

A. Completing the analysis of the influence of Time or Cost BCT on Demand sensitivity 

We must now discuss the influence on the Demand curve slopes of Utility UU


 and Total market 

size T

TOTT 
, both UT terms momentarily neglected above to focus on the LOS terms. The influence 

of Total market size is of peripheral interest and we may set TOT 0  , but the role of Utility 

remains central because it is the vehicle of induction. In that sense, Logit cores within a QDF are 

extensively defined by more or fewer restrictions on the form structure triplet [U, T, F]. 

 

On the form of the Utility coupling term in intercity passenger models. In this respect, we note 

that actual estimates of U found in Column 1 of Table 7 are concentrated between -0,08 and 0,41 

and we remark in passing that values numerically close to zero, such as 0,05 in Model 1 and -0,08 

in Model 8, are in fact significantly different from zero, as can be verified from the original 

studies
68

. But for the moment we concentrate on the five values of U between 0 and 1. 

 

In those five models, the sometimes blindly used log-sum obtained by imposition of the restriction 

U = 0 is rejected in favour of positive values of U that, in this range between 0 and 1, imply that 

LOS generate increased travel through U but at a decreasing rate, and certainly not at the constant 

rate implicit in the logarithmic case in (13-A) and (13-B). Does it matter? 

                                                 
68

 And, for Model 8, from Column 3 of Table 22. 
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We argue in Appendix D that it indeed matters critically in some trade models based simply on 

Distance; here we focus on the implications in the more sophisticated transport models specified 

with coupling terms built from the denominator of choice models. For this, we seek to understand 

some implications of restrictions on values of the triplet [U, T, F]. 

 

B. Form structures and the behaviour of price-quantity decompositions 

To document the implications of the most frequently used among the different specifications of the 

triplet, namely [U = 0; T = F = 1], we first provide a graphical representation of the Transport 

decomposition of the effect of a Price change on Quantity demanded effected by introducing the 

transport quantity decomposition alone on a map of quantities, but without indifference curves. 

 

In a second
69

 step taken in Appendix B, this map is enriched by the superposition of the classical 

microeconomic decompositions due to Hicks (1939) and Slutsky (1915), which both require 

indifference curves, in order to show that all three decompositions could be studied further within 

the same graph if one wanted to illustrate how the implied pattern and shape of indifference curves 

changes under distinct form structure assumptions. But we will not study these map patterns, a 

complex enterprise in its own right, here or in Appendix B.  

 

The Transport decomposition with two modes. Figure 6 shows how transport analysts often 

decompose, for any transport demand model
70

, the change in the Quantity demanded subsequent to 

a lowering of a modal Price. 
 

Figure 6. Transport decomposition of a variation in travel demand from 1 to 2 
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To understand the graph, first note that the two rays starting at the origin and passing through points 

1 and 2 show the initial and final modal splits between t1 and t2 trips demanded for the two modes 

in question (modes 1 and 2); moreover, the intersection of any of these rays and of parallel total 

market lines T1 or T2 placed at 45° conserves the modal shares between modes 1 and 2. By contrast, 

                                                 
69

 The introduction is performed in many detailed steps in the source paper (Gaudry, 1998) centred on distinguishing 

substitution and complementarity features between HSR and air markets.  
70

 This is easier to perform with QDF frameworks but can be effected with any framework: DDF, Armington, ... 
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any movement along these negatively sloped lines placed at 45° implies new splits between modal 

demands t1 and t2  summing to a constant Total number of trips. 

 

Modal Diversion (or transfer) is the movement from point 1 to point TD where the modal shares 

have changed without affecting the total number of trips and Modal Induction (or generation) is the 

movement from point TD to point 2 where the total number of trips has changed without affecting 

the modal shares. 

 

Figure 6 also identifies regions which, subsequent to a lowering of the price of mode 1, correspond 

to complementarity or substitution in classical microeconomics. Appendix B shows within the same 

graph (and under particular assumptions) identifiable differences between this Transport 

decomposition {[1 → TD] ; [TD → 2]} and the known decompositions by Slutsky and Hicks. 

 

Implications of different form structures. Consider the ratio of Induction to Diversion effects 

implied in the popular combination of a Linear Logit (T = F = 1) with a log-sum term (U = 0). 

We can show that such imposed insensitivity to the level of LOS and U variables leads for the ratio 

to a simple expression, derived simply from components of (13-B): 
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if we set 0TOT  , which implies 1UU

 . This Induction to Diversion ratio is indeed independent 

of LOS and Utility terms, and therefore constant, a property that might be surmised to have 

implications also for the ratios of Income to Substitution effects definable after Hicks and Slutsky to 

the extent that, for instance, constant marginal utility will imply for all three decompositions the 

very rigid and peculiar indifference map structure studied by Bruzelius (1979)
71

. 

 

The observed presence of damping or amplification in Tables 7, 8 and 9 above requires that Time or 

Cost slopes not be constant but influence the Induction to Diversion ratio driven by the shape of 

indifference curves. The Log-Sum & Linear Logit form structure [U = 0 ; T = F = 1] disallows 

such systematic variability from the start
72

 by requiring, according to Bruzelius, linearly additive 

utility functions demonstrated here to be untenable in most cases and samples considered. 

 

Indeed, actual form parameter sizes and signs have in fact revealed more than movement away from 

a constant ratio such as (16). They have revealed three systematic movements and departures away 

from constancy: (i) non constant marginal utility of travel
73

 (expressed in U)
74

; (ii) a tendency of 

marginal utility of Cost and Time to diminish at a decreasing rate (expressed in T and F), with the 

exception of urban markets where utility of Time diminishes at an increasing rate; (iii) a tendency 

for the relative decrease with Distance of the marginal utility of Cost as compared to that of Time 

(expressed in the difference between T and F). 

 

                                                 
71

 See in particular his Appendix B of Chapter 3, pages 79-83, entitled: “Restrictions on the Utility function for the 

Marginal Value of time to be Constant”. 
72

 Some make a reasonable compromise: Setec International and Stratec (2008) set U = 0 but estimate T and F for 

each of 5 intercity trip purposes in France. BCT values by trip purpose all apparently exhibit absolute and relative 

damping, as in most models of Table 7, but the single decimal place accuracy of the reported estimates makes it 

difficult to be highly certain of the pervasiveness of relative damping without access to all the digits actually used in the 

calculations. On such calculations, Spitzer (1982, Conclusion 4) recommends 4 decimal place accuracy. 
73

 Remember that the comparison of Models 22 and 26 has led to a decisive rejection of the Train-McFadden goods-

leisure trade-off. 
74

 The rate of substitution between travel and other activities also naturally depends on TOT. 
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It should be possible to give a visual representation of the implications of this demonstrated “non 

constancy” not only with the transport decomposition but with the two classical ones as well, and to 

contrast actual non constancy cases with hypothetical constancy cases, but we shy away from those 

complex graphic tasks and come back to Logit LOS cores, neglecting the Utility effects. 

5.5. Logit cores and attitude to LOS uncertainty (UR) or to distance (DA) 

We concentrated above on the establishment of non linearity, i.e. of variable marginal utility, as a 

real dimension of demand functions independent from the presence of non sphericity in 

distributions of model residuals and from consumer heterogeneity in any garb (“ordinary” segments 

or atomized “mixed” segments).  

 

And our survey of non linear models found that the actual values of BCT powers associated with 

modal characteristics displayed obvious regularities discussed in the context of the “Cost damping” 

claims: for simplicity, we call those regularities under certainty assumptions the “Law of demand 

A” in summary Table 11. We now try to go further in two ways, identified in the same table as the 

“Law of Demand B” under added Risk attitude uncertainty assumptions and as the “Law of 

Demand C” under added Distance attitude postulates. 

 

Seemingly atypical BCT estimates in all above models. Focus first in Figure 7 on a subset of 

results from Tables 7-9 to isolate amplification cases which seem atypical, limiting ourselves to the 

21 Mode choice models in Expenditure format where at least two distinct BCT powers were 

estimated, a limitation that removes the noise from rough frequencies plotted in Figure 5. Generally 

speaking in Figure 7, absolute and relative
75

 damping prevail and our concern is with a few notable 

exceptions: (a) the only intercity case of slope amplification pertains to business trips in the 

Quebec-Windsor Corridor (Model 2 in line B). All other cases of amplification pertain to urban 

areas; (b) the two cases of VOT amplification in line C, the first for the same corridor, but for non-

business trips (Model 5), and the second for Sweden (Model 6). 
 

Figure 7. Pinpointing amplification in BCT estimates for Time & Fare variables (ex Tables 7-9) 

A summary of twenty-one 

models 

Power parameters of Marginal rate of substitution 

Logit models where Time and Fare 

were separately transformed 

TIME FARE VALUE OF TIME 

1T   1T   1F   1F   ( ) 0T F    ( ) 0T F    

• Eight intercity passenger models 

A Models 1,3,4, 6,10,15 D  D  D  

B Model 2 (business; RP data)  A D  D  
C Models 5 (SP) and 6 (RP) D  D   A 
• Three intercity freight models 

D Models 35-37 D  D  D  
• Ten urban passenger models 

E Models 18, 20-22, 26-28, 32-34  A D  D  

Relative frequency of Damping and Amplification above and in Table 18 

Absolute 

Slopes 

Damping 1   D*  D**   
Amplification 1    A*    

Relative 

Slopes 

Damping 0 

 
 D***  

Amplification 0 

 
  A*** 

If Models 44, 47 and 48 of Table 18 are also considered, one finds in the 24 models (12 intercity and 12 urban): 

D*and A* Time damping occurs in 11/12 of the intercity models and in 1/12 of the urban models. 

D** Fare damping occurs in 12/12 of the intercity models and in 11/12 of the urban models. 

D*** and A*** Value of time is damped in 9/12 of the intercity models and 11/12 of the urban models. 

 

                                                 
75

 According to Jara-Diaz (2007, Equation 2.34, p. 61), VOT should always increase with Distance. 
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Introducing the attitude to LOS Risk and the attitude to Distance. To understand these special 

shaded amplification cases of Figure 7 in greater depth, we turn to recent theoretical developments 

made to take some account of LOS risk in the modelling of demand or to practical developments 

introducing an interaction between Distance and LOS terms. 

 

What then about uncertainty in transport LOS conditions? Is it possible to identify and distinguish, 

within prima facie parameter values for Time or Fare, influences of attitudes toward risk from those 

pertaining to the variable marginal perceptions of these conditions? It is extremely difficult, if not 

impossible, to isolate risk attitudes from marginal utility valuations if the transformations of 

probability functions are linear; but we get a new shot at the problem with non linear functions
76

. 

 

Our first purpose is to understand how BCT power estimates for Time or Cost may be influenced by 

new implicit risk parameters Time and Fare, that, once recognized, cannot be added or subtracted 

from the former. The new parameters can be interpreted as revealing an optimistic, neutral or 

pessimistic “attitude towards Risk”. 

 

Our second purpose is to study another possible reason for atypical gross BCT values of LOS 

variables. In this case, where the new relevant power parameters isolating a new role for Distance 

(called an attitude to Distance) are again designated by the symbols Time and Fare, former gross 

BCT power estimates are algebraically increased or decreased by the presence of the newcomers in 

such a way as to allow for explicit calculations of gross and net values. They can also be interpreted 

as revealing an optimistic, neutral or pessimistic “attitude towards Distance”. In particular, we 

develop the view that urban (and some intercity) trip markets may well display very different total 

(gross) BCT powers of Distance due to this attitude to Distance component  distinct from the 

remaining outcome evaluation component  The distinction applies at least to Time and Cost but 

can also in principle be used for other door-to-door elements such as Walk time or Frequency of 

Service. Let us develop these attitudinal interactions in turn, starting with uncertainty. 
 

Level-of-service variables under risk assumptions (LOS-UR). The central idea of Rank 

Dependent Utility specifications imagined by Kahneman & Tversky (1979), formulated by Quiggin 

(1979, 1982), discussed extensively in the aftermath (e.g. Chateauneuf & Cohen, 1994 or Cohen & 

Tallon, 2000) and generalized in Chateauneuf (1999), is that it is possible to distinguish, using a 

product of functions, between the attitude to outcome risk (attitude to risk or how the outcome 

probabilities are perceived) and the attitude towards the outcome itself.  

 

In an empirical application of this idea for the first time in transportation, and to a Logit LOS Time 

variable, Lapparent (2004, 2010) chose as attitude to Outcome (AOU) function the BCT  Time . 

And, as attitude to Risk (ARI) transformation function    : 0,1 0,1   theoretically applied to a 

difference between two cumulative distributions of probabilities (p1, ... , pi, … , pK) ordered on a 

certain support involving a loss of resources (here In-vehicle Travel Time), namely 
 

(17-A)  
1

1 1 1

K k k

i i i k

k i i

ARI p p aou Time 


  

    
         

    
   , 

 

he chose the simple power function. His choice of a simple power function preserves the constraint 

that the sum
77

 of perceived probabilities, called a capacity, equal 1, but other ARI functions 

                                                 
76

 Two curvatures now matter, but it is the perception of the distributions of probabilities of outcomes that is critically 

nonlinear here, not the attitude towards these outcomes which may exhibit linearity or not. 
77

 This property does not hold for the BCT, often conveniently used as an Arrow-Pratt measure of constant relative risk 

aversion (concavity 1   indicating in that context risk avoidance, and convexity 1   a preference for risk), 
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respecting this constraint are available, such as the inverted S-shape function used by Tversky & 

Kahneman (1992) on the lines of Quiggin (1981), which embodies other assumptions
78

 about the 

attitude towards risk, and even more complex constructs ─ see for instance the convenient 

tabulation in Stott (2006). The simple power function in ARI distorts the difference between the two 

cumulated values in (17-B): 1   convexity contracts it, indicating optimism; 1   concavity 

amplifies it, indicating pessimism; and a neutral pivot 1   recovers the “untwisted” neutrality of 

the Expected utility of the outcome.  

 

These choices jointly yielded the desired product formulation:  
 

(17-B) 

 

 
1

1 1 1

Time

K k k

i i k

k i i

p p T

 




  

    
       

     
    

allowing for a classification of co-monotonic cases with respect to time loss 

 

 
1   1   1   1   1   1   

Risk profile79 
Optimism Neutrality Pessimism Dislike Neutrality Strong dislike 

i ●   ●   Strongly risk seeking 

ii ●    ●  Weakly risk seeking 

iii ●     ● Indeterminate 

iv  ●  ●   Risk seeking 

v  ●   ●  Expected value 

vi  ●    ● Risk averse 

vii   ● ●   Indeterminate 

viii   ●  ●  Weakly averse 

ix   ●   ● Strongly averse 

 Attitude to risk Attitude to outcome  

 

Lapparent actually used 5 discrete Time frequency distributions varying with the period of year 

associated with two Air France paths between Paris Charles-de-Gaulle (Terminal 2) and two 

London airports (Heathrow and City) and assumed that professional frequent travellers belonging to 

his sample could be well aware of such distributions pertaining to the same morning time departure 

slot and airport; he did not transform the Fare variable. 

 

He found, as shown in Model 39 of Table 10, that Time optimism (T = 0,54) prevailed in ARI and 

that the most likely BCT value for AOU, (T = 0,98), was slightly inferior to 1 but not significantly 

different
80

 from 1, an interesting combination of risk optimism and neutral perception of time loss 

[ 1, 1]   , as in Yaari (1987), for this short
81

 air hop. 

                                                                                                                                                                  

including in Box-Cox Logit models (e.g. Montmarquette & Blais, 1987). The attitude to risk is reassigned to the     

function in the RDU framework of (17-B), the BCT now revealing only the attitude to outcome. The expression 

“aversion to risk” has become more ambiguous depending on whether a RDU [ , ]  , or a simpler [ 0, ]  , 

framework is used. 
78

 Decision-makers are assumed to be pessimistic when the probability of occurrence of a bad time outcome is low and 

optimistic otherwise, the inflexion point of the shape being driven by only one parameter: for instance, they refuse to 

participate in a lottery if the prize is low but not if it is high, as implied in Kahneman & Tversky (1979). 
79

 This list of nested known cases and their risk profile labels were established with Lapparent. They correspond as 

follows: [ 1, 1]   , Case (v), to Bernouilli (1738, 1954); [ 1, 1]   , Cases (v) and (vi), to Neumann & 

Morgenstern (1947); [ 1, 1]   , Cases (ii) and (viii), to Yaari (1987); [ 1, 1]    and [ 1, 1]   , Cases (i) 

and (iv), to Chew et al., (1987); [ 1, 1]   , Cases (iii) and (vii), to Chateauneuf & Cohen (1994). 
80

 This result obtained with a BCT is extremely close to that obtained for the same mode by Hjorth & Fosgereau (2011, 

Column 5 of Table 5 or 6) who unfortunately used a fixed form TTe


for the attitude to Time itself. 
81

 As argued early on in this analysis, the smaller the sample domain of a variable, the harder it is to detect curvature 

and the less this matters if only marginal changes in LOS are considered.  
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Level-of-service variables under distance attitude assumptions (LOS-DA). Another way of 

enriching the problem at hand is to distinguish between the attitude to LOS and the attitude to 

Distance by lifting the restrictions by which they are per force linked in (14-B): one introduces an 

interaction between Distance and say Time, effectively setting the first component of (17-A) to 1 

and enriching the  aou Time component, written more formally below
82

 as  , ( )naou x g x . 

 

The idea of this third approach substituting for the attitude to Risk an attitude to Distance is that 

Distance, as revealed in everyday language, has a role in consumer utility functions independently 

from that of its implicit presence in LOS variables. Again, the mechanism will be one of a product 

of functions but we now return to the assumption that LOS service variables (the network) are 

provided under certainty and further assume that they are taken as given
83

 by the traveller. 
 

Table 10. Mode choice models distinguishing attitude to risk or distance from attitude to outcome 

Mean  #

 DISTANCE of

Market Modes Purpose T T Sum F F Sum T - F T -F Sum in km obs.

39. Lapparent (2004), T. 5.1 Paris-London 2 air paths Frequent 0,54 0,98 n.a. 0,00 1,00 n.a. n.a. -0,02 n.a. 343,00 756

40. Lapparent et al.  (2009), T. 6 Czech Rep. 4 modes Occasional -0,66 0,74 0,08 0,21 0,29 0,50 -0,87 0,45 -0,42 145,47 2044

41. Axhausen et al.  (2008), T. 4 Switzerland 4 modes All (mean) -0,26 1,00 0,74 -0,60 1,00 0,40 0,34 0,00 0,34 42,89 15870

42. Ramjerdi (1993), T. 9.5.16 Norway 5 modes Services 0,20 1,00 1,20 0,00 1,00 1,00 0,20 0,00 0,20 167,10 5824

43. Ramjerdi (1993), T. 9.5.28 Norway 5 modes Work 0,40 1,00 1,40 0,00 1,00 1,00 0,40 0,00 0,40 180,79 5824

Optimism: < 1 Y Y Y

Pessimism: > 1

(Absolute Damping: < 1 Y Y Y Y Y

slopes) Amplification:  > 1 Y

(Relative Damping: Sum > 0 Y

slopes) Amplification: Sum < 0 Y

Column 1 2 3 4 5 6 7 8 9

Value of Time

Power Parameter LevelsModel Power Parameter Differences

A. Denotes attitude to Risk

B. Denotes attitude to Distance

VALUE OF TIME

Attitude to Risk or Distance

Attitude to Outcome

Meaning of  parameter

TIME FARE

Legend

Y = Amplification

   Assumed value

 

Consider then a random variable x characterizing transport Run Distance, 

, , 0,x D D D D D     , its associated distribution excluding the null value,    : R \ 0 0,1F   , 

and a transformation function     of that distribution with the same property as in (18-A), namely 

   : 0,1 0,1 .   Assume further that x is linked to an exogenously determined network Supply n 

drawn from a finite set of discrete possibilities  N x . The traveller may then be assumed to 

maximize utility on this predetermined distance interval offering a given fixed Supply: 
 

(18-A)    ( )max , ( ) ( )
D

s

s x
D

aou x g x d F x
 
   

 

where, if the Supply actually consists in L service attributes, the interaction of attitude to Distance 

and attitude to attributes terms might be taken to be 
 

(18-B)   0 1
, ( ) ( , , ) ( ( ))

los Ls s

los los los loslos
aou x g x h x D D aou g x 




         

 

                                                 
82

 This formalization was generously contributed by Lapparent, prompted by a much less competent formulation in a 

previous draft. 
83

 We therefore exclude from the Distance attitude formulation both LOS uncertainty and any potential endogeneity 

resulting, at least in aggregate models, from equilibration between demand and supply, but we do not exclude the 

possibility that Distance be observed with error, notably of the Berksonian kind (Berkson, 1950) where the true value 

X
true

 is distributed around observed values X
obs

, so that (X
true 

= X
obs

 + u). In the classical case, the measured value is 

distributed around the true value and the observed value is equal to the true value plus an error (X
obs

 = X
true

 + u). 
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and where, maintaining ( )
( ( )) Times

los losaou g x T


 , the attitude to Outcome term defined in (17-B), 

obvious specifications for the attitude to Distance term certainly include 
 

(18-C) ( , , )
1

los

los
los

los

x D

D
h x D D

x







  
 
 

 





. 

 

We choose the simple power candidate to match and account for current practice
84

, say with Time: 
 

(18-D)     D ,T T( )

Tf D,T D T
      , 

 

where the Distance attitude power parameter has the same interpretation as that of the Risk attitude 

parameter in (17-B): 1   convexity contracts objective Distance, indicating optimism; 1   

concavity amplifies it, indicating pessimism; and a neutral pivot 1   is “untwisted” neutrality. 

 

Beyond analogy, a feasible pirouette? In view of this, it is natural to ask whether, going beyond 

analogy of meanings for   and the common use of products of functions, (17-B) could contain (18-

D) as a special case, derived perhaps by making use of continuous functions and of suitable 

assumptions, and Distance itself be considered as an indicator of Risk. The exploration of this 

possible pirouette is beyond this survey but should be undertaken. 

 

Distance attitude and trip length. The re-specification of Logit models with (18-D) interactions 

for both Time and Fare LOS variables leads to estimates of , andD T T  , to updated demand slopes 

of type (13-B) and we may consequently rewrite VOT ratio (14-B) under “Distance-attitude” 

assumptions as: 
 

(18-E) 

,

, Distance , Distance , ,

,

1
1

, ,

1

, ,

rail XTime

Time rail rail rail X rail XTime Fare Time Fare

rail XFare

Fare

rail X rail Speed

DA rail rail

rail X rail Price

V
VOT D D

P



   










 



  
  

 

which means that prima facie gross BCT values obtained under uncertainty assumptions may in 

fact contain an explicit Distance attitude component that can be analytically “netted out” with (18-

E), where
85

 the new   parameters effectively lift the previous constraints linking Expenditure and 

Rate metric exponents in (14-B). 

 

This difference between gross and net values is calculated in Table 10.B
86

 for Model 40 pertaining 

to the Czech Republic where both Time and Fare, treated as in (18-E), make gross VOT 

amplification appear (the sum of power terms equals -0,42) at the same time as net VOT damping 

obtains (the sum of BCT terms equals 0,45) after subtraction of the Distance attitude effect
87

. But 

the sample of available models in Table 10.B is insufficient to compute other meaningful net effects 

and reversals between gross and net amplification and damping. 

 

Still, we note from the four available Models 40-43 cases that, despite the very restrictive AOU 

choices made in the last three, Distance power estimates all reveal an optimism (   1Time  ) that, as 

shown in Figure 8, tends to decrease with the average distance prevailing in the sample, but without 

                                                 
84

 We have found no application using a product of BCT applied concurrently to a Distance and to a LOS variable. 
85

 The simplicity of this calculation results from the fact that interaction is formulated as a product of effects in (18-D).  
86

 Table 10 does not include the two variants based on much smaller unusual computer assisted telephone interviews. 
87

 In the preliminary version of their paper, Lapparent et al. (2009) indicate that the introduction of the interaction 

between Distance and other variables considerably increased the log-likelihood. 
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reaching pessimism proper (   1Time  ). All four sample average distances are short compared to 

those found in the Quebec-Windsor Corridor to be presently documented. 

 

The longer, the worst in intercity markets. The tendency observed in Figure 8 is consistent with 

an “attitude to Distance” interpretation of Distance interaction models of structure (18-E) and may 

help to understand the high absolute amplification value 1,80T   found in that corridor for 

business trips (Model 2 of Table 7 or Figure 7) where the average distance
88

 by the dominant mode, 

car (86,1% of all trips), is 337 km. It is possible that, in the often severe climatic conditions of that 

Canadian region, the underlying attitude to Distance reflects pessimism perhaps to the point that the 

pivot value 1   is passed, and that the total result implies a high BCT value. 

 

Relative amplification found for Sweden (Model 6)
 89

 and for non-business trips in the Corridor 

(Model 5 of Table 7 or Figure 7), where the car share is 90,0% and the average car distance covered 

is 300 km, may also be related to underlying distance despite the fact that, in all other models 

pertaining to Canada as a whole or to the Corridor (Models 1 to 4), and of course to Germany 

(Models 10, 15 and 16), relative damping prevails. This frequency (2 out of 9 cases) resembles that 

found in urban markets (2 out of 16 cases) where only Models 29 and 30 show amplification 

perhaps linked in those cases with a Time BCT not independent from the Frequency BCT. 
 

Figure 8. Trip length increases Time Distance pessimism (Models 40-43) 

 
 

Pessimism in all urban markets. In urban models however, the extraordinary pervasiveness of 

Time amplification found in Table 8 and isolated in Figures 5 and 7 suggests the presence of 

relatively strong pessimism (perhaps even of positive values of Time ) arising from extensive daily 

experience
90

 of urban networks: the gross linearity found in the BART case (McCarthy, 1982) 

                                                 
88

 When both car and rail are present, the average car distance is 356 km for business and 346 km for non business trips. 
89

 The provisional results for the fourth milestone Swedish long distance model (Algers, 2011) based again, as for 

Model 6, on trips longer than 100 km, also exhibit relative amplification. This suggests that intercity VOT that decrease 

by Distance may be associated with cases of relatively long distances, like Canada and Sweden, as opposed to Germany 

or the United Kingdom. But only a study of attitude to Distance (LOS-DA) across countries differing markedly in trip 

length distribution could determine whether these are outliers and Daly’s (op. cit.) second observation be amended. 
90

 This interpretation seems consistent with a recent finding by Ben-Elia & Shiftan (2010). Inspired by Prospect theory, 

but in an experimental context different from that of Model 40, they found that experienced drivers took more risk in 

road path choices if they had good real-time information on the state of the network. As this information is notoriously 

bad in cities, their result would suggest that experienced urban drivers take little risk, or become quite pessimistic about 

time risk, which would mesh in with hidden positive values of Time  sustaining urban Time amplification values 

upwards. 
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commented in a footnote above might also be a case of relatively strong pessimism
91

. Suburban 

trains are not just slower High Speed trains: their Run Distances may be more resented. 

 

Some other implications of the distinction between attitudes. This new interpretation of 

interactive Distance terms raised to a simple power has a side benefit in that, as each LOS variable 

such as Time is already accounting for Distance in model specifications under certainty, a further 

multiplication by Distance required a justification beyond improved fit. Since this ad hoc practice, 

used at least since Ramjerdi (1993)
92

, was recommended in an extensive study of VOT (Mackie et 

al., 2003), many authors (e.g. Hess, 2008; Axhausen et al, 2008; Lapparent et al., 2009) have, in 

models where utility functions contain both socio-economic variables (Distance and Income being 

considered as such by these authors) and network variables (at least Time and Cost), found 

goodness-of-fit gains to the addition of Distance interaction terms with such variables. 

 

Are attitudes new? But it should not be thought that the conceptual distinction between attitude to 

risk and attitude to outcome, for one, is entirely new. As can be verified in summary Table 11, it 

was used by Marshall himself who, in his discussion of the postponement of consumption, believed 

in the objectivity of the perception of time uncertainty but in the subjectivity of trade-offs proper 

over time [ 1 ; ]for all individuals changing across individuals  . 

 

It is harder to find in the past explicit attitudes to Run Distance in the sense of (18-D) or, mutatis 

mutandis, to Elapsed Time. Isolating the attitude to Run Distance in this way differs from, but is not 

inconsistent with, the interpretation of Distance as a sort of Income effect, even if respective roles 

may hard to distinguish in practice. 

 

The understanding of Distance as a sort of Income effect associated with Time arose in the context 

of DDF models of type (0) where researchers were having extreme, not to say fatal, difficulties 

obtaining expected signs on the coefficients of Time and Fare LOS variables used in each Modal 

demand equation. 

 

To make the point with a simple linear case for two modes and Time, and remembering to define 

excess time between modes 1 and 2 as 2 1( )EX Time Time  , they were estimating equations with 

structure (A) in: 
 

(18-F) 
1 1,1 1 1,2 2 1,1 1 1,2 1 1,1 1,2 1 1,2( ) ( ) ( )

( ) ( ) ( )

T Time Time Time Time EX Time EX

A B C

             
 

 

seemingly without realizing that (adjustments made for logarithmic specifications of (18-F)), the 

combination [Time1, Time2] in (A) is strictly equivalent to [Time1, EX] in (C). 

 

In such circumstances, the sign obtained for 1,1  in (A) will depend on the sign of 1,1 1,2( )   in 

(C) and sometimes come out “unexpected” with 2 or more modes, even in very high quality 

samples: in intercity (Domencich & Kraft, 1970) and urban (Kraft, 1963) cases, unconstrained cross 

coefficients typically yielded nonsensical results for Times (and Fares) and all cross terms had to be 

constrained to secure at worst zero coefficients (which were duly obtained). 

 

                                                 
91

 In their meta-analysis, Mackie et al. (2003, Tables 12-13) notably studied interactions between Distance and Walk or 

Wait times with RP data. All power value estimates of Distance imply optimism but car users appear somewhat more 

optimistic than public transport (bus and rail) users. 
92

 There is no use of Distance power terms in her previous complementary work (Ramjerdi & Rand, 1992). 
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In the aftermath of silly results obtained, format (0) consistently yielded “expected” signs and 

prospered over the years by retaining solely own-Time and own-Fare terms, imposing in effect 

diagonal slavery to keep out cross-terms: such is the IIA coup d’état magic practice for modes. 
 

Table 11. Three laws of rail demand under certainty, risk, and distance attitude assumptions 
 

A. Marshall’s (1890) law of demand under Price certainty assumptions (UC) 
 

“There is then one general law of demand:—The greater the amount to be sold, the smaller must be the price at 

which it is offered in order that it may find purchasers; or, in other words, the amount demanded increases with 

a fall in price, and diminishes with a rise in price. There will not be any uniform relation between the fall in 

price and the increase of demand. A fall of one-tenth in the price may increase the sales by a twentieth or by a 

quarter, or it may double them. But as the numbers in the left-hand column of the demand schedule increase, 

those in the right-hand column will always diminish.” Book III, Ch. III.2. 
 

can be spatialized and applied to rail Price and Speed, or to rail Fare and Time, with BCT. The Level-of-Service 

(LOS) slopes must: 

(a) be negative, i.e.  , 0
Farerail X  , and by extension  , 0

Timerail X  ; 

(b) exhibit “non uniformity” of response, i.e. curvature  , 1
Farerail X  , and by extension.  , 1

Timerail X  ; 

and may be such that: 
 

(c-1) their respective absolute values fall (in accordance with the second partial derivatives) either at a damped rate 

with  , 1rail X  , or at an amplified rate with  , 1rail X  ; 

(d-1) their relative values (the marginal rate of substitution or VOT) either fall in damped manner 

with  , ,( ) 0
Time Farerail X rail X   , or increase in amplified manner with  , ,( ) 0

Time Farerail X rail X   . 

 

B. Marshall’s conjectural distinction between attitudes towards risk (over time) and towards outcome 
 

“But in estimating the present marginal utility of a distant source of pleasure a twofold allowance must be 

made; firstly, for its uncertainty (this is an objective property which all well-informed persons would estimate in 

the same way); and secondly, for the difference in the value to them of a distant as compared with a present 

pleasure (this is a subjective property which different people would estimate in different ways according to their 

individual characters, and their circumstances at the time).” Book III, Ch. V.7.  
 

finds a general expression in Rank Dependent Utility (RDU) specifications where transformations of probability 

distributions are used under Risk assumptions (UR) with risk support devices. But such devices do not yet treat 

Elapsed Time or Run Distance as risk supports proper. 
  

 

C. If, in a spatialized model, the attitude to outcomes is expressed by BCT applied to LOS variables, and the 

attitude to Distance (DA) is expressed by a simple power term parameter Distance  applied to Distance 

interaction terms, the enriched slopes with respect to Time or Fare may be such that:  
 

(c-2) their respective absolute values fall either at a damped rate with  , Distance ,( ) 1rail rail X   , 

 or at an amplified rate with  , Distance ,( ) 1rail rail X   ; 

(d-2) their relative values either fall in damped manner with 

 , Distance , Distance , ,( ) ( ) 0
Time Fare Time Farerail rail rail X rail X       , or increase in amplified manner with 

 , Distance , Distance , ,( ) ( ) 0
Time Fare Time Farerail rail rail X rail X       . 

and distinctions between gross and net attitudes towards Distance can be made, due account taken of the 

interpretation of increasing Distance  parameters values as indicators of reduced Distance optimism up to pivot point of 

neutrality Distance( 1)  , and of Distance pessimism beyond it. 
 

 

But the unavoidable systematic reintroduction of cross terms to account for close substitutes in 

demand and the issue of Distance attitudes bring the problem to the fore again. These considerations 

argue for specifications of type (15-B), not (15-A), independently from their demonstrated superior 

collinearity performance already alluded to. In microeconomic analysis of consumer behaviour, the 
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demand for a good is a function of its unit Price (not of expenditures on it or on competing goods) 

and of Income level: the latter sustains basket size whereas the former determine basket mix.  

 

A necessary clarification of (18-F) then consists in adding a reference “time-income” index, and 

preferably one that is not decomposable into the times of the modes, for instance Distance, 

combined with Speed (and Price) rates. 

 

Towards more complexity in the specification of (0-B). If a Distance attitude term is further of 

interest, the restrictions on BCT found in the simple transliteration from Expenditure to Rate 

metrics in (14-B) are in principle lifted: the new problem is that of duly accounting for time and 

money constraints, say by a standard term Y for the latter and a term D for the former, and of adding 

the Distance attitude interactions. 

 

It finally becomes possible to specify the vague expression (0-B) and imagine, in the absence of 

Risk attitude concerns, a combination of Rate specification and Distance attitude. If two modes are 

competing and we neglect the constant and other possible variables, all non separable representative 

Utility functions will become very complicated, for instance for mode 1 in a two-mode case: 
 

(18-G)  2 21 21 1 2 1
( ) ( )( ) ( ) ( ) ( )

1 1,1 1 1,2 2 1,3 1 1,4 2 1,5 1,6[ ].P VP VV VP P D YU f D P D P D V D V D Y
                  

 

One realizes from this formulation decomposing gross demand slopes with products of non linear 

functions applied to each LOS variable that many real life specifications are extremely restrictive 

even without LOS uncertainty and under IIA limitations. Those include impedances based only on 

Distance, as in many Gravity models well surveyed in Erlander & Stewart (1990), or linearly 

constructed generalized costs, as in Abraham’s Probit and Logit “path choice Law” in France 

(Abraham & Coquand, 1961), and elsewhere. They implicitly embody strong assumptions as to 

attitudinal trade-offs and rates of substitution among outcomes. 

 

Why worry about gross damping or amplification? But, coming back to simplicity, if demand 

falls with Distance, how much does it in fact matter that gross values imply amplification or 

damping, i.e. differing rates of falling, especially if little can be done by transport firms or 

infrastructure providers to modify the attitude to Distance? We will argue below that amplification 

or damping will influence the market share distance profile of HSR gain forecasts, with 

implications for passenger and revenue project forecasts, and that using gross values falling faster 

rather than slower matters indeed. 

 

But we must turn our attention beforehand on how obtaining the very sizes and signs of gross and 

net slope curvature coefficients naturally requires dealing explicitly with the estimation of form as a 

model dimension of unavoidable import where, in particular, the blind conveniences of untested 

fixed forms, long suspicious in an environment of monotonic curvatures, can be expected to 

convince even less in the emerging environment of co-monotonic curvatures (17-B) or (18-D). 

5.6. Attitude to response asymmetry over 50 years of transport Logit models 

It may be asked in passing why it took so long for non linearity of explanatory variables of Logit 

models to arise in a scientific environment where the BCT is “the most used non linear 

transformation in econometrics” (Davidson & MacKinnon, 1993). 

 

The Logistic curve in pre-transport garb, 1838-1960. The discoverer of the logistic curve, 

Belgian mathematician Verhulst (1838), used it to describe population growth (Verhulst, 1845), as 

did others independently later in the Unites States (e.g. Pearl and Reed, 1920, 1927) and elsewhere, 

including Canada, and for the same reasons. Their interest was its sigmoid shape defined on the 

exp(Vi) quantities, as it was for Berkson (1944), promoter of the binomial canonical form (BNL) in 
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the bioassay literature. In more recent times, even the most sophisticated derivations of the Logit 

model by some economists (e.g. Leonardi, 1982 or 1984) also tended to ignore asymmetry
93

. 

 

The inception of asymmetric logistic curves in transportation, 1961-1962. But in 1961, at the 

very beginning of applications to transport and of the recognition of “Abraham’s Law” in French 

road assignment projects, Abraham effectively used as representative utility function the logarithm 

of a (linear) generalized cost variable because it was obvious that road path choice would be better 

represented in this way: if the constructed cost variable is reduced to a unique element, this RUF is 

the equivalent of setting the BCT at 0 in the Standard Box-Cox Logit. Also concerned with data and 

fit, Warner (1962) compared various LOS forms and retained the logarithmic one after due analysis 

of residuals in his urban example. It is unfortunate that these transport applications
94

 are typically 

ignored in essays on the history of the Logit model often excessively focussed on the later waves of 

development of 1968-1970 and of 1977
95

 (e.g. Cramer, 2003; Andersson & Ubøe, 2010). 

 

The McFadden stream, from 1968 onwards. In contrast with the data-driven form work stream 

associated with Abraham and Warner, a subsequent work stream addressing strictly comparable 

problems, namely road tracé choice (McFadden, 1968 or 1976a) and mode choice (CRA, 1972; 

Domencich & McFadden, 1975), used from the beginning the linear LOS form as RUF 

workhorse
96

. This central tendency has remained stable to this day in a vast consulting industry in 

transport and beyond, with limited heroic and inefficient linear approximation adaptations 

consisting in having as many linear models as there might be LOS classes of Price, Time and 

Distance, to say nothing of socioeconomic variables. It would seem that the Davidson-MacKinnon 

claim applies more to Classic than to Logit regression where one hardly goes beyond exhausting 

and often incoherent linearity by segment sub-sample. 

 

Barriers to BCT asymmetry determination. But it is unclear how long this attitude to asymmetry 

can hold in view of even more general approaches applied for instance in Model 40 of Table 10, 

and of the availability, among others, of freeware such as TRIO (Gaudry et al., 2001) for aggregate 

and discrete data, available since 1993, and BIOGEME (Bierlaire, 2003, 2008) for discrete data. 

 

As discussed above, the application of BCT to explanatory variables in Logit models does not raise 

the same difficulties of applications found in Classic models, where the formulation of the 

Likelihood function of a dependent variable that cannot be negative (that is censored) is not 

straightforward
97

. But new barriers, common to (6-A) and (6-B), reflect new difficulties of 

application that impose a computational cost: the guaranteed unimodality of the Likelihood function 

has been lost; statistical pitfalls lurk due to the re-parameterization effected by BCT ─ for instance 

the surprising necessity to compute conditional t-statistics
98

 that are invariant to the scale of 
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 When the present author worked with Giorgio Leonardi during the summer of 1983, our concern was the behaviour 

of probability limits in Dogit and IPT cores defined in Section 7, because positive asymptotes of choice probabilities 

that differ from 0 or 1 primarily reveal modeller ignorance or lack of relevant data. In that context, we felt we could 

treat the shape of the response curve and the existence of thick tails between the limits as distinct dimensions. This 

viewpoint was later justified by demonstrations with urban data for Winnipeg (Laferrière & Gaudry, 1992) and with 

intercity data for Canada (Gaudry, 1990 or 1993), the last of which is documented in Table 18 as Model 46. 
94

 The seminal paper by Abraham & Coquand (1961) should be used by historians of the Multinomial Logit (MNL) as 

its inception in transportation. 
95

 Year of the derivation of the log-sum aggregator. For the long story, see Williams (1977). 
96

 Except here and there for some ad hoc logarithmic transformations of a variable in the utility functions of transit 

modes, at the beginning often cars owned but more recently a LOS variable, as documented above and below. 
97

 For a recent summary, see Gaudry & Quinet (2010). 
98

 Likelihood ratio tests remain exact but are tedious to apply if there are no automatic step-wise like procedures 

implemented in the computer programmes. Among freeware programs that do not implement this routine, TRIO 

(Gaudry et al,, 2001) compute the required conditional t-statistics directly, in addition to elasticities and values of time; 

BIOGEME (Bierlaire, 2003, 2008) computes unconditional t-values but it is possible to perform an additional iteration 

conditionally upon the BCT estimates to obtain conditional t-statistics of the regression coefficients. 
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regressors instead of the usual unconditional values of other non linear models (Spitzer, 1984; 

Dagenais & Dufour, 1994) ─; and forgotten numerical precision issues on computers resurface 

when BCT become relatively large, positively or negatively. 

 

Readers concerned with these plumbing issues might want to test for themselves the results 

obtained for the models of Table 7, 8 or 16 for which databases and fully documented freeware 

algorithms, listed in Table 12, are easily accessible. Note that sample elasticities (1) are provided 

above in Table 2 and Figure 2, as well as in Table 4, and weighted aggregate probability point 

elasticities (4) in Table 3. 
 

Table 12. Downloadable databases and algorithms used for some models of Tables 7, 8 and 18 

 
MODEL

99
 DATA BASE REQUIRED ALGORITHM RESULTS 

 
 

Total demand Modal split  Listed or 

used in U Time , Fare 

from Tables 7and 18 - National intercity models (Domestic only, except 9) 

2 
*VIA RAIL 1987 

 
PROBABILITY  

Table 3 

Table 8 3 
    0** 

44, 46 Canada 1976 
 

 SHARE 

Figure 1 

Table 18 

8 
LEVEL 

Table 7 

9 Germany 1985 Table 7 

from Tables 8 and 18 – Urban models 

22, 26 

48 
Santiago 

1983-1985 


PROBABILITY 
Table 8 

Table 18 

 
DOCUMENTATION 

OF EACH ALGORITHM 

ESTIMATION 

PROCEDURES 

PROGRAM USER 

GUIDE & DATABASES 

SOURCE & COMPILED 

PROGRAMS (IBM PC) 

 LEVEL 
   L-1 option: serial correlation Tran et al., 2008 Tran & Gaudry, 2008a Tran & Gaudry, 2008b 

   L-2 option: directed correlation Tran & Gaudry, 2008c Tran & Gaudry, 2008d Tran & Gaudry, 2008e 

PROBABILITY 
   P-2 to P-6 options for cores Tran & Gaudry, 2009a Tran & Gaudry, 2009b Tran & Gaudry, 2009c 

SHARE 
   S-1 to S-5 options for cores Tran & Gaudry, 2008f Tran & Gaudry, 2009d Tran & Gaudry, 2009e 

QDF: elasticities of Modal demand calculated according to equation (43-E) for [Total]  [Split] model pairs 

   20 pair options Tran & Gaudry, 2008g Tran & Gaudry, 2010a Tran & Gaudry, 2010b 

    In QDF, elements of (43-E) are calculated using sample elasticities evaluated at means. But the algorithms allow more: 

Elasticities calculated L-1 L-2 P-2/P-6 S-1/S-5 

1 : Sample: 

means

y X

X y




 Sample Sample Sample Sample 

2 : Moment: [ ( )]

[ ( )]
o

o means

m y X

X m y




 

m1 = expected value 

m2 = standard error 

m3 = skewness 

   

3 : Weighted aggregate   W. aggr.  

4 : Probability point ≡ 3 (probability)   Pr. point  

5 : Percentage point ≡ 1 (share)    Perc. point 
 

 * This database is found in the QDF algorithm documentation Tran & Gaudry (2010a). All other databases are 

found in the documentation of the algorithms required to estimate the models. The Santiago 1983-1985 

database is found in Tran & Gaudry (2009b) and the Canada 1976 and Germany 1985 databases are found 

in Tran & Gaudry (2008d and 2009b). 

** Model 0 is not listed in a table but specified just after Figure 1 showing its estimated responses. 
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 Some of the models were estimated with earlier versions of the Level, Probability or Share algorithms implemented 

in Version 1 of TRIO available since 1993 and in Version 2 distributed as freeware since 2001 (Gaudry et al., 2001). 
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6. Form knowledge benefits: signs of variables, model forecasts, other 

6.1. The interpretation of signs under Beta-Lambda correlation 

We observed above in the discussion of Table 3.B how use of optimal BCT forms could redress 

“incorrect” regression sign obtained in a linear or another specification. If BCT matter, it is then 

legitimate to extend that observation and to comment on their linkage to regression signs. We start 

with the casual empiricism often met in practice and argue that the interrelatedness of statistical 

correlation and form argues for a more formal approach that is not without epistemological 

dimensions. We then ask what difference BCT estimation makes, notably for HSR forecasts. 

A. Taking the beat out of the betas by maximization of expected signs? 

Analysts sometimes play a “trial and error” game with forms until they have found the “right” beta 

regression signs. This puts forms at the service of signs and takes the beat out of the betas by 

working one’s way towards desired signs through maximization of the number of expected signs 

rather than of log-likelihood values. As such combinatorial exercises are performed for both 

components of demand framework (1)-(2), we discuss both Classical and Logit malpractices. 

 

Classical regression. Under a classical formulation of type (6-A) adopted to explain the variability 

of airline fares, Borenstein & Rose (1994) list two variants, linear and logarithmic, partially 

reproduced in Table 13.A. As that table makes clear, only two (braided) variables, the least 

significant ones in statistical terms, keep their signs: the remaining three dummy variables 

expressing the nature of market competition, the core issue of the paper, change signs but are highly 

statistically significant under both alternate form conditions. The authors choose one (let the reader 

guess which!) solely on the basis of regression sign anticipations and without providing any 

common statistical measure between candidate results: who said empirical work
100

 was no fun? 
 

Table 13. Signs changing with the form of variables in transportation studies 

A. Airline Price Dispersion, U.S.A. (RP data)  B. Discrete Passenger Mode Choice, Paris (RP data) 

Borenstein & Rose (1994); Model 2 from Table 3  Gaudry (1985); Models from Table 3 (1976 data) 

Coefficients and t-statistics conditional on form  Elasticities and t-statistics conditional on form 

y variable :  Gini ticket price dispersion index  y variable : 6 modal choices  Car mode 

X variables... Linear Log-log Optimal  X variables… Linear Optimal 

[...]     [...]   

Monopoly +0,154 -2,169 n.c.  Car cost -0,11 -0,17 

 (+4,81) (-5,27) n.c.   (-3,27) (-4,15) 

Duopoly +0,174 -2,033 n.c.  Parking cost, worker cat. 1,3 -0,01 0,00 

 (+4,97) (-9,46) n.c.   (-3,23) (2,76) 

Large-duopoly -0,022 -0,117 n.c.  Parking cost, worker cat. 2,4 -0,01 0,00 

 (-2,77) (-0,21) n.c.   (-2,48) (1,70) 

Small-duopoly -0,017 -0.067 n.c.  Cars per worker in household 0,28 0,33 

 (-1,89) (-1,10) n.c.   (6,05) (6,92) 

Competitive +0,172 -1.807 n.c.  Car time -0,28 -0,28 

 (+7,16) (-6,98) n.c.   (-4,62) (-3,76) 

Lambda (fixed) 1,00 0,00 n.c.  Lambda (fixed and estimated) 1,00 0,50 

Log-likelihood  n.c. n.c. n.c.  Log-likelihood -911,82 -904,03 

Comment: No log-likelihood values are reported by the 

authors who arbitrarily choose between models after 

stating that « the main qualitative results are robust to 

changes in functional form » (sic!). 

 Comment: RATP staff pointed out that much work had 

gone into obtaining the “right” negative sign for the two 

parking cost variables over a two-year period of model 

development. 

 

In this problem, formal BCT tests of the appropriate form might well have invalidated the arbitrarily 

preferred choice, perhaps by finding a BCT value between the linear and logarithmic cases, and 
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 The motto of preferred sign maximization is: «Wenn es keine Spaß macht, dan ist es keine Arbeit». 
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insignificant conditional t-statistics, or perhaps even by finding an optimal point not too far from 

their rejected choice...and contrary to the authors’ expectation that competition increases price 

variability, supposedly “verified” here by the last variable in the arbitrary linear case. 

 

Logit regression. With models of type (6-B), it is frequent to find in Modal utility functions some 

variables appearing non linearly alongside others appearing linearly, both forms adopted without 

the slightest stated statistical justification. For instance, the ANTONIN model for the Paris area 

(STIF, 2004) uses the logarithm of modal costs without providing reasons ─ perhaps sign problems 

or even the unstated desire to impose rough absolute Cost damping
101

 (13-F) found in other cities? 

 

Unfortunately, in the analysis of bargaining games between data and analysts (Leamer, 1978a, 

1978b; Ley, 2006), too little attention has been paid to the difficulties of producing honest results 

with form endogeneity built into the formulation and the maximization of the Likelihood function. 

B. The joint determination of statistical correlation and form 

We wish to emphasise here the reasons why the BCT is more than a legitimate curve determination 

or fitting device and cannot be dissociated from the determination of statistical causality to the 

extent that, with non-orthogonal data (where non-orthogonality itself also depends on form, a matter 

of interest in experimental design
102

), form and statistical correlation are in fact jointly determined. 

 

The importance of non zero simple correlations. But what is known in fact and practice should 

also be expected from theory because signs in multiple regression depend on both the variances (on 

their standard deviations)
103

 of regressors and on their covariances (their unweighted simple 

correlations)
104

, elements that change with the power used for variables. To see this, consider slopes 

b2 and b3 of the least squares regression plane relating observations on a vector Y to those on a 

constant X1 and on variables X2 and X3, as found in textbooks (e.g. Johnston, 1984, p. 81), written 

simply in terms of the standard errors of the variables and of their simple pairwise (“linear” or 

“simple Pearsonian”) correlation based on raw unranked data: 
 

(19) 1 1
2 32 2

23 2 23 3

12 13 23 13 12 23 ,
1 1

r r r r r rs s
b and b

r s r s

 
 

 
 

where, lower case letters denoting deviations from means calculated as ( )k tx X X    , the 

sample standard deviations of Y, X2 and X3 are, respectively: 

(20) 

 

2 2 2

2 3

1 2 3, , ;
y x x

s s s
T T T

  
  

 

and the simple pairwise correlations are defined as 

(21) 

 

           
2 3 2 3

12 13 23
2 2 2 2 2 2

2 3 2 3

( ) ( ) ( )
, , .

yx yx x x
r r r

y x y x x x
  

  

     
 

 

If the regressors X2 and X3 in (19) are orthogonal, the correlation coefficient r23 = 0 and the multiple 

regression slope coefficients b2 and b3 coincide with the simple (positive or negative) pairwise 
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 This specification also imposes relative Cost damping (15-C), contrary to all findings of Table 8. 
102

 To the extent that variables are jointly determined by analysts for an SP questionnaire, one would not expect the 

variables as shown in the questionnaire to be orthogonal but rather their values transformed by the most likely BCT 

powers to be orthogonal. 
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 The standard deviations in (20) are the positive square roots of the variances. 
104

 The covariances equal the correlation coefficients in (21) divided by T and multiplied by their own denominators: it 

is therefore unweighted by the geometric mean of the second moments of the separate variables and weighted only by 

T. 
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correlation coefficients (21). But if they are not orthogonal, the presence of r23 ≠ 0 can change the 

signs of b2 or b3: it becomes determined by a difference of terms, one of them a product of 

correlation coefficients, of perhaps opposite signs. All of these simple correlation coefficients are 

modified in hard-to-predict ways by BCT and by corrections to re-establish spherical residuals. 

 

Correlations among triply transformed variables. To get a sense of these modifications, 

remember that, in the presence of Box-Cox transformations and of heteroskedasticity defined as in 

(6-D), all variables of (6-A), dependent and explanatory, may be rewritten as: 
 

(22) 

 

 

 

 

 
,***

1/2 1/2
, 0 ,
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
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



 
 

    
  

  ; 

(A) 

or as 

 

 

 
**

1/2

xk

kt
kt

t

X
X

f Z

  
  
  

,  

(B) 
 

depending on whether serial autocorrelation, assumed to be produced by a stationary process of 

order  (with 0 ,   ), is present or not. In the latter case (B), the variables are still doubly 

transformed. In the absence of heteroskedasticity, the number of transformation operations is 

reduced by one in each case, both illustrated shortly with demonstrated parameter sign changes: 
 

(23) 

 

   **

, , 0 ,xk xk

kt kt k tX X X
 

 

 
    
 

  ; 

(A) 

or in 

 

  * xk

kt ktX X


 . 

(B) 

 

Doubly transformed variables in Classic regression. The first example, illustrated in Figure 9, 

pertains to a monthly Transit demand equation for schoolchildren in Montreal
105

 where variables 

are doubly transformed, as in (23-A). 
 

Figure 9. Travel time, Income and autoregression parameter sign changes under different forms 

 
 

Figure 9 contains plots of some 4 demand elasticities (Wait time, Travel time, Fare, Income) and of 

4 autoregressive parameters 1 3 4 12( , , , )     drawn from this model and shows how elasticities of 

variables and autoregressive parameters vary with form, starting with the logarithmic case (at the 
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 Source: Gaudry & Wills, 1978, Figure 19.  
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origin) and ending with squared variables. We note sign changes for Travel time and Income around 

the square root point 0,55   and a sign change for 
4 to the right of the linear case, at 1,30  . 

 

Interestingly, one concludes with a logarithmic model that students travel more if speeds are 

lowered, and this despite the fact that transit is then an inferior good; but the reverse conclusion is 

reached if the model is assumed to be linear or the point of optimal form  = 0,84 is accepted: 

longer travel times reduce demand and transit is a superior good. Should not the data decide? 

 

Singly transformed variables in Logit regression. In the second example, reported in Table 13.B 

for the Car mode, the explanatory variables are transformed as in (23-B). In that respect, the 

demonstration resembles that of Table 3.B except that the reference work trip model, again pre-

specified independently from the author of the form tests (Gaudry, 1985), is urban with 6 modes 

and obtains only one BCT. 

 

The first column reproduces results selected from a linear model specified and estimated by RATP 

& Cambridge Systematics (1982) using very high quality network data and travel choice 

information from a carefully made 1976 survey of work trips in Paris (Moïsi et al., 1981). Only a 

single BCT was applied to all strictly positive variables. As shown in the second column, the log-

likelihood gains were dramatic (15 log likelihood points; one degree of freedom of difference) and 

the optimal BCT estimate stood exactly at mid-point between 0 and 1. That square root value 

modified some of the elasticities by about 20% but, more importantly, changed the signs of the 

parking cost variables for the two highest socio-economic categories of Paris area employees: 

perhaps are their chauffeurs all the more useful that parking prices are high? 

 

Simple correlation made complicated. Coming back to reasons for sign changes, consider now 

the general expression for any correlation coefficient (e.g. r23) of a regressor variable in (19) 

rewritten in accordance with the triple transformation of (22-A) in terms of starred variables: 
 

(24) 
     

*** ***

2 3

23
2 2

*** ***

2 3
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r
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


 
. 

 

One could be forgiven for concluding from (24) that playing with forms to obtain desired slope 

signs is a game that is hard to be predictable about. Even in two-variable regression, to say nothing 

of K-variable regression, we do not expect signs to be manually predictable from (24) as a practical 

alternative to matrix inversion of transformed variables in (6-A), or its equivalent in (6-B). 

 

But we do not exclude the possibility of further research illuminating the analytical structure of (24) 

with respect at least to the monotonic Box-Cox transformation which, in contrast with a simple 

power transformation X  , preserves the ordering of the data
106

 and possesses two important 

invariance properties, namely  
 

(25-A) ,r srX sX X for any scalar r s
  

  
     
     
                     [to a scalar transformation] 

and  

(25-B) 
     

X X X for any value of
   


      [to a power transformation] 

 

where (25-A) expresses invariance of the BCT to a scalar transformation of the data if there is a 

regression constant (Schlesselman, 1971) and (25-B) expresses invariance to a power 
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transformation of the data even in the absence of a regression constant (Gaudry & Laferrière, 1989) 

and involves a rescaling of the betas (neglected for simplicity). 

 

We therefore argue that the interpretation of the size and sign of beta regression coefficients and of 

their derived statistics such as demand elasticities, requires explicit form tests. BCT form estimates 

can be easily reported and the trade-off between researcher priors and Likelihood values dependent 

on form transparently provided. Otherwise, results obtained from models of untested form remain 

suspiciously conditional. 

C. Form sensitive causality: the Beta-Lambda correlation proposal  

Beta-Lambda correlation or causality. In discussions of statistical causation within parametric 

models, well summarized in Fridstrøm (1992), the understanding of causality, even defined solely 

in terms of statistical association such as the basic approach introduced by Wiener (1956) and 

Granger (1969) to study dynamic relationships between and among time series, does not explicitly 

emphasize a role for functional form, be it the local approximation kind, such as Box-Cox, or a 

more global kind, such as Fourier. Statistical correlation is not explicitly form sensitive
107

 and 

unconditional in that sense, despite the fact that some authors realize that they only “yield a 

complete picture of linear causality properties” (Dufour & Renault, 1998). 

 

To address this need, and for want of a better expression in the circumstances, we call Beta-Lambda 

correlation (or causality, if one prefers) the joint data-based statistical establishment of regression 

coefficient and BCT power form
108

 parameters, an issue formally addressed in Cho & Ishida (2012). 

 

Factor & Form composition of systematic GLM components. Limiting the discussion to the 

confines of the Generalized Linear Model (GLM) framework introduced by Nelder and Wederburn 

(1972), it is clear that multiple dimension Factor and Form (F & F) construction of the systematic 

component poses special problems independent from the link and random component specification 

of the model. 

 

For instance, the direct or inverse Box-Cox and Box-Tukey parameterization of variables in 

regression involves asymmetries in the sense that the value of Lambda does not matter 

independently from the value of Beta (e.g. it does not matter at all if Beta is zero) but the value of 

Beta matters even when the value of Lambda does not. We avoided above these limit statistical 

cases better left to specialized discussions and we concentrated on the credibility of some non linear 

form estimates in order to establish a first benefit of endogenous forms. 

 

A first benefit of Beta-Lambda correlations. In our mind, it suffices that the establishment of 

correlations among variables that are not conditional on their a priori mathematical forms in 

multivariate regression, but are jointly determined with the forms themselves, add some flesh or 

structure to the “constant conjunction” which is said by David Hume to give rise to our sense of 

causality. 

 

In particular, we do not see why measures of statistical causality should be restricted by assumed 

log-linearity or linearity of regressors in transport, or elsewhere: jointly unconditional estimates of 
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 A recent and representative example of the unconscious neglect of form is found in Dufour & Taamouti (2010) 

where the parametric theory part is written in terms of VARMA models with all variables appearing linearly and the 

empirical illustration with all variables suddenly appearing in logarithmic form. The door is implicitly closed on the 

possibility that a model could be cointegrated of order 1 say in logarithmic form but not in Box-Cox optimal form, as 

found by Djurisic (2000). Concerning cointegrated models, Granger (2010, p. 4) states: “Note, we often see X t and log 

Xt being considered as modeling alternatives, with the assumption that they have the same time series properties.” The 

same author just limits forecasting to time-series (Granger, 2008). 
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 For reasons explained in Appendix 1, it seems unwise to include simple power transformations in this definition. 
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form and regression parameters have at least this epistemological benefit and, as we shall presently 

see, other benefits as well because they make a practical and demonstrable difference to forecasts. 

6.2. The comparison of forecasts made under different functional forms 

After showing that non linearity makes a difference to the signs obtained for particular 
kX  

variables, can one indeed demonstrate, for any variable 
kX , that it also makes a numerical 

difference to model forecasts, defined as calculable values of dependent variables?  

A. Two methods  

To compare the forecasting ability of models, we consider the set of differences between values 

producible by a pair of selected model variants differing only in form
109

 and: 
 

(i) [Resolution method]: either characterize (without calculating all individual values) this set with 

respect to any variable kX  potentially present in both variants
110

 (and perhaps suitably 

modified)
111

, by finding some diagnostic points: the values of kX  that make the difference 

change sign (a crossing point A), reach a maximum (the point of maximum difference B) or 

induce a slope change (an inflexion point C); 
 

(ii) [Enumeration method]: or characterize the same set by first calculating all individual values of 

the differences and then by studying the set of effectively calculated values against the kX  

variable of interest (or possibly another), for instance by plots called X-Profiles of 
1Xp  at the 

beginning of Section 3. 
 

If Enumeration is straightforward, finding those ABC points of diagnostic with respect to kX  by 

Resolution is sometimes, even for our cases differing only in form, another matter: it may be 

analytically impossible and require resort to numerical resolution, a quandary that differs between 

models of Total market size estimated by Classical regression and models of Mode choice estimated 

by Logit regression. In neither case does our presentation of the Resolution method assume that the 

reference variant is of particular form, but our applications of the Enumeration method with Logit 

models below all take as reference variant the popular linear case. 

B. The Resolution method and forecasts by Classical regression models  

At a common sense motherhood level, “when the necessary underlying assumptions are true, the 

Box-Cox transformation works well and does produce superior forecasts when a transformation is 

really justified” (Nelson & Granger, 1979), a “superior forecasting ability” that even holds in 

simultaneous equation models (Spitzer, 1977). 

 

But can anything more systematic be said about the difference between forecasts from two Classical 

Box-Cox regression variants 1 and 2 of a model of type (6-A) differing here by assumption only in 

the constraints imposed on the   applied to each? Consider such models and their difference: 
 

(26) 
1( )

1 10 1 1
k

n k kn n

k

Y X u
     

 

and 2( )

2 20 2 2
k

n k kn n

k

Y X u
     

(27) 2 1( ) ( )

20 2 10 1
k k

n k kn k kn

k k

Y X X
    

   
       

   
   
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 It simplifies notation here that variants have the same explanatory variables but this condition is not necessary. 
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 Because the diagnostic can attribute differences with respect to any variable, any variable may be considered and it 

need not be present in both variants, but we focus here on variables that are. 
111

 In the generation of forecasts, the levels of variables may be those from the sample but it is also possible to modify 

only one variable in both variants, as done with rail Time below, to understand its contributions to the difference in 

forecasts generated with that variable set at project scenario levels in both variants. 
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where indices 1,...,k K apply to variables, 1,...,n N refer to observations, 
10 ,

1k  and 
1k are 

the parameters associated to variant 1, 
20 , 

2k  and 
2k  are those associated with variant 2 and the 

difference nY between values forecasted by the fixed parts neglects their error terms 1 2 and n nu u . 

Table 14 presents the equations to be solved, and the analytical solutions when they exist, to locate 

points A, B and C characterizing the behaviour of difference (27) with respect to the variable qnX of 

interest for the diagnostic. 
 

Table 14. Analysis of differences between Total demand models differing in form values 

(28-A) To find a crossing point 0nY  , solve for qnX  : 

 
2 1 2 12 1 2 1( ) ( )

20 2 10 1

2 1 2 1

0q q k kq q q q

n qn qn k kn k kn

k q k qq q q q

Y X X X X
      

   
    

   
            

      
   

 where we note that the terms in brackets do not contain qnX . 

and  
 

(28-B) To find the point of maximum difference / 0n qnY X   , solve for qnX 
: 

 
2 11 1

2 1 0q qn
q qn q qn

qn

Y
X X

X

 
 

 
  


 

 which yields 
2 1

1

1

1q 2 1 2

2

,   (  and / 0)
q q

q

qn q q q

q

X
 

   





 
    
 

 

and   

(28-C) To find an inflexion point 
2 2/ 0n qnY X    , solve the second derivative for qnX  : 

 
2 1

2
2 2

2 2 1 1 1 22
( 1) ( 1) , ( , 1,2)q qn

q q qn q q qn q q

qn

Y
X X

X

 
     

  
    


 

 which yields: 
2 1

1

1 1 1 1

1q 2

2 2 2 2

( 1) ( 1)
,    (  and 0)

( 1) ( 1)

q q
q q q q

qn q

q q q q

X
    

 
   

  
   

   

 

 
 

iff, as qnX  goes through the inflexion point, there is a change in 

sign of the second derivative. 

 

 Consider first (28-A) where the difference is found after isolating qnX  outside of the summation 

signs in (27) and developing the transformations 1( )q

qnX


 and 2( )q

qnX


. Note that, when 1 2q q   as it 

must be for our purposes
112

, a crossing point qnX   cannot be found analytically but only 

numerically, except for the very special quadratic cases [ 1 2q   and 2 1q  ] or [ 1 1q   and 

2 2q  ], and need not be unique. But the point of maximum difference qnX 
 in (28-B) and an 

inflexion point qnX  in (28-C) can be found analytically. One can also determine from the second 

derivative in (28-C) whether the point of maximum difference is a maximum or a minimum, 

depending on which of the following condition holds: 
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(28-B Max) 
2 1

1

1 1 1 1

1q 2

2 2 2 2

( 1) ( 1)
,    (  and 0)

( 1) ( 1)

q q
q q q q

qn q

q q q q

X
    

 
   




  
   

   

 ; 

(28-B Min) 
2 1

1

1 1 1 1

1q 2

2 2 2 2

( 1) ( 1)
,    (  and 0)

( 1) ( 1)

q q
q q q q

qn q

q q q q

X
    

 
   




  
   

   

. 

 

It is therefore possible to demonstrate without excessive work by the Resolution method ─ finding 

ABC points ─ that different BCT form values assumed or estimated for qnX  must imply distinct 

numerical forecasts. One might of course want to perform an Enumeration analysis as well. 

C. The Resolution method and forecasts by Logit regression models  

As was already clear from Figures 1 and 2 on elasticities, one expects Logit forms to have impacts 

on revenue forecasts of HSR investments and, more generally, on reactions to significant changes in 

transport network conditions. But it would be important to have an alternative to the use of the 

Enumeration method and be more general to find out what lies behind different population 

elasticities (or values of time) that so conveniently summarize the behaviour of distinct models. To 

study market structure, the Ekbote-Laferrière revenue maximization exercise summarized above 

(see Table 4.C) relied only on Enumeration. 

 

Problem formulation. Can anything systematic then be said with ABC diagnostic points, as we 

just did for models of the Total market, about the difference between forecasts from two Box-Cox 

Logit variants 1 and 2 of a model of type (6-B) differing by assumption only in the functional form 

structure applied to each?  

 

Table 15 presents the equations to be solved and their solutions to locate points A, B and C for two 

such formulations with LOS transport variable 
iqnX  assumed present in the i

th
 alternative of a 

multinomial (i, m = 1,...,M) Logit model: 
 

(29) 
1

1

1

exp

exp

in
in

mn

m

V
p

V



 
and 

2
2

2

exp

exp

in
in

mn

m

V
p

V



, 

with n is an observation subscript and the i
th

 representative utility components defined as: 
 

 

(30) 
1( )

1 1 1 1
ik

in io ik ikn

k

V X
    and 

 

2( )

2 2 2 2
ik

in io ik ikn

k

V X
   , 

 

where the indices 1,...,k K  again denote the independent variables and the 1 0 1 1( , , )i ik ik    and 

2 0 2 2( , , )i ik ik    are the parameters associated to variants 1 and 2, respectively. The difference 

between forecasted shares of the i
th

 alternative inp due to changes in a variable 
1 2iqn iqn iqnX X X  , 

the so-called own effect because we neglect here the cross-effect  ( )jnp j i  , is given by: 
 

(31)  
2 1

2 1

2 1

exp exp

exp exp

in in
in in in

mn mn

m m

V V
p p p

V V
    

 
 

 

Differences in forecasts: the general case  1 2 , 1iq iq   . In Table 15, consider first crossing 

point to be determined by (32-A). For our purposes
113

, when 
1 2iq iq  , a crossing point iqnX 

cannot 
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be found analytically but only numerically, except for the very special quadratic cases [
1 2iq   and 

2 1iq  ] or [
1 1iq   and 

2 2iq  ]: the situation is therefore analogous to that of (28-A) above. 

However, unfortunately
114

, in (32-B) and (32-C) cases, the solution cannot be found analytically, in 

contrast with (28-B) and (28-C) above. The critical point iqnX   that would solve (32-B) and the 

value iqnX  that would solve (32-C) must both be found numerically. It is still possible to determine 

whether the point of maximum difference is a maximum or a minimum by considering the second 

derivative found in (32-C), evaluating it at the point iqnX  , and finding out numerically whether it 

changes signs when 
iqnX  passes through it. 

 

Table 15. Analysis of differences between Logit Mode choice models differing in form values 

(32-A) To find a crossing point 0inp  , we have to solve for iqnX 
:  

 
 2 12 1

2 1

0iq iqiq iq

iqn iqn in

iq iq

X X R
  

 
  

 
,  

and 
iqnX is not contained in 2

1

log n
in

n in

S
R

S Q

 
   

 
, 1 1expn mn

m i

S V


 , 2 2expn mn

m i

S V


  

 or in 2 12 1( ) ( )

2 0 2 2 1 0 1 1

2 1

exp ik ikiq iq

in i ik ikn i ik ikn

k q k qiq iq

     Q X X
  

   
  

     
         

        
 

 
and 

 
(32-B) To find the point of maximum difference / 0in iqnp X   , we have to solve for iqnX 

:

 

and 

2

2

2

1

1

1

12 2 2 2

2

22 2 2

1 1 1

1 1 1

exp exp exp( / )
= 2

expexp exp( / )

exp exp exp( /
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mn in iq iqn iqin m i
iq iqn

iqn mnin iq iqn iq m i

mn in iq iqnm i

in iq iqn iq

V V Xp
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V X
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






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

 

 

 
















 
  

   

 




 1

1

11

1 1 2

1

)
2 0,  ( , 0)   

exp

iqiq

iq iqn iq iq

mnm i

X
V


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





 
   

  
 

(32-C) To find an inflexion point 
2 2/ 0in iqnp X    , we have to solve for iqnX  the second derivative: 

 
 

 
 

 
 

 

22
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11 12
2 2 22 1
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1 1 1 1
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iq iqn n niq iqnin
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
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 

 



 

  
   

      

 
   

     
2 0).iq 

 

 where 
1

1 1 1 1 1exp exp( / ) / expiq

n in iq iqn iq mnm i
A V X V


 


  , 

 and 
2

2 2 2 2 2exp exp( / ) / exp .iq

n in iq iqn iq mnm i
A V X V


 


   

 

The point of maximum difference is particularly interesting because determining its sign tells us 

something about the location of all other points in the sample, i.e. about whether one model always 

over-predicts relative to the other. But there is unfortunately no analytical solution for it, as 

expression (32-B) should make intuitively clear. In that expression, it has been possible to isolate 

variable iqnX  because, contrary to the previous writing of the expression for the derivative from 
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which it was derived, 
iqnX does not appear in utility functions of other modes and is no more 

included in any of the 1 2 1 2, ( ),  and mn mn in inV V m i V V  functions. In that way, it is perhaps even more 

obvious that there is no analytical solution to determine the desired point of maximum difference 

iqnX  , as might also have been readily realized
115

 by an analysis of that more complicated previous 

script just mentioned, namely: 
 

(33) 

2 11 1

2 1

2 12 1

2 2 1 1

   .
exp expexp exp

2 2
exp exp exp exp

iq iq

iq iqn iq iqnin

mn mniqn m i in m i in

in mn in mnm i m i

X Xp

V VX V V

V V V V

 
 

 

 

 


 


   

 
 

 

 

The analytical proof of differences between forecasts generated from two model variants therefore 

requires harder work to find ABC points for Logit models than for models of Levels: it always 

requires numerical resolution. Alternatively, differences have to be studied by the Enumeration 

method after a proper sample enumeration (or calculation for all sample points) has been effected.  

 

Differences in forecasts: the special case  1 2 1, 1iq iq   . But is this still true for point B if the 

reference case is linear as it often bound to be? In this typical case, (33) becomes: 
 

(34) 

2 1

2 1

2 12 1

2 2 1 1

   .
exp expexp exp

2 2
exp exp exp exp

iq

iq iqn iqin

mn mniqn in inm i m i

in mn in mnm i m i

Xp

V VX V V

V V V V


 



 

 


 


   

 
 

 

 

where, given negative q  slope coefficients and denominators that are necessarily positive, the sign 

of the maximum difference (34) still depends on the relative sizes of the two RHS terms. It remains 

obvious that the location of this potential turning point depends on more than the value of 
2q , 

about which one can now ask a further question, before we proceed with Distance profile 

applications of the Enumeration method. 

 

Special case profiles and damping or amplification. Is there a link between domains delineated 

by the pivot value 
2 1q   and the difficulty of finding diagnostic point B by the Resolution 

method?  

 

It is clear from (34) that a damped or amplified value of 
2q , despite its acknowledged role in 

establishing asymmetry of response, cannot be a sufficient condition to predict whether the point of 

maximum difference between two forecasts is negative or positive and, in either case, to determine 

as well if it is a true maximum rather than a mere unlikely fixed point.  

 

By implication, neither could it be useful in predicting how many of the remaining n-1 points might 

stay on the other side of the x-axis from that of the location of the point of maximum difference. 

Indeed, why would the shape of Distance profiles, for example, be decisively determined by rates of 

change of the slopes (damping/amplification domains) rather that by the full model and the sample, 

including the size of iqnX ? 
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D. Using the Enumeration method on three Logit models: Distance profile analyses 

After performing an enumeration analysis with respect to a certain variable, say Time, a Distance 

profile may be constructed by relating the results to Time itself (yielding a Time-Profile of 
1Xp ), or 

to another variable such as Distance itself (yielding a Distance-Profile of 
1Xp ). If each Time or 

Distance profile is unique, it is still possible to ask three focussed questions about any of them: 
 

Q1. If a crossing point exists, is its existence independent from the double pivot 1T  , as expected 

from our understanding of (34)? 
 

This matters because 1T   is the pivot for slope independence (as distinct from amplification 

or damping) in (13-E) and for response curve symmetry (as opposed to asymmetry) in Figure 1. 
 

Q2. As the existence of crossing points implies, with a linear reference model, a certain mix of 

linear model over-prediction (calculated 0inp   are below the x-axis) and under-prediction 

(calculated 0inp   points are above the x-axis), how much over-prediction occurs?  
 

Q3. Is the amount of linear model over-prediction sufficient to imply excessive linear revenue 

forecasts? i.e. is it sufficient for the maintained non linear model to imply lower total trip and 

revenue forecasts than the reference linear model?  
 

For a given over-prediction profile, the answer depends on whether, over the complete sample, 

linear model over-prediction is concentrated in relatively high total market size ranges or not. 

As total market size falls rapidly with Distance, the amount of over-prediction of relatively 

short trips is critically important to the existence of this linear model excess revenue bias.  

 

We answer those questions for three maintained model examples of optimal non linear form and, in 

the Quebec-Windsor Corridor example, also for maintained models of non-optimal a priori forms. 

 
i) Maintained optimal forms: Germany, the Pyrenees and the Quebec-Windsor Corridor 
 

For the first three models, the optimal Box-Cox form structures involve the transformation of more 

than one variable, but we only graph results for a particular 
2q , respectively 2,Price  for freight 

flows and 2,Time  for passenger flows, in Figures 10, 11 and 12. 

 

ICE trains in Germany. Figure 10 from Mandel et al. (1994, 1997), was produced by comparing 

Inter City Express (ICE) train market share gains across an ICE scenario for Germany with a model 

of the whole country (Mandel et al., 1991) notably using for the Mode choice an extensive database 

from which 6 000 observations were drawn for estimation purposes. 

  

After individual probability differences were calculated with linear and optimal non linear forms of 

the same intercity model for three modes, a best fit curve was estimated to summarize the structure 

of the cloud of individual inp  points, an S-shaped form where differences depend on OD distance 

or trip length. Within the sample range, a crossing point occurs around 150 km, an inflexion point 

around 350 km, and a maximum difference point at about 650 km. 

 

The mix of linear model over-prediction for short trips and under-prediction beyond 150 km is clear 

but whether it implies linear model excess revenue bias
116

 cannot be visually ascertained with 

certainty because the proportion of long trips required to offset short trips is not provided. 
 

                                                 
116

 The authors of Model 40 in Table 8 disregarded their superior Box-Cox tests and based passenger forecasts for an 

automatic train (called Orly-Val) accessing Orly airport from a suburban line on their linear results. Actual ridership for 

Orly-Val proved to be very inferior to linearly forecasted values and the case gave a bad reputation to Logit models. 
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Figure 10. Stylized Distance profile for ICE train scenario, Germany; 6000 obs. ( 0,24T  ) 

 

 

Intermodal trains across the Pyrenees. The only other extant example of the behaviour of inp  

comes from the aggregate (share) freight model of continental European flows referred to above 

(Gaudry et al., 2008), from which Equations (26) to (33) are also taken. In Figure 11, we use the 

Standard Box-Cox form results
117

 graphed against road distance. 

 

The differences shown in Figure 11 are calculated after decreasing intermodal train prices 

everywhere by 10% to determine the effect on all trans-Pyrenean intermodal train flows, within a 

model where classical trains and trucks are competing for traffic with intermodal container services. 

 

The S-shaped structure resembles that of Figure 10, at least in the sense of some lower market 

shares at short distances and of large linear under-prediction at mid-range distances. 
 

Figure 11. Distance profile for Intermodal train scenario, Pyrenean border; 749 obs. ( 1,83P   ) 

 

                                                 
117

 The Generalized Box-Cox form, where the three modal prices appear in all Modal utility functions, is used by the 

French ministry for Transport since 2006. 
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HSR trains in the Quebec-Windsor Corridor. For Figure 12, we use the Business market models 

documented in Table 3.A and focus, as was done for Germany, on improvements in rail Time, 

comparing again the differences 
inp  between various non linear form predictions to a reference 

prediction made with the Linear model of Column 1. We will successively use as maintained model 

the optimal model and a series of non optimal variants. 

 

For this trip purpose, rail is available for 4291 of the 4402 individuals in the sample and we assume 

that HSR implementation would reduce rail door-to-door Time by 50% for all. As exact OD 

distances are not provided in the final official database, we plot results against pre-project door-to-

door rail Travel time (called Train own time in Table 3). Rail trip duration, which varies between 

0,75 hours (45 minutes) and 6,75 hours (405 minutes) in the sample, is in any case very (positively) 

correlated with Distance. 
 

Figure 12. Duration profile, HSR train scenario, Quebec-Windsor Corridor; 4291 obs. ( 1,80T  ) 
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Despite the appearance of linear over-prediction everywhere, an exact count of the proportion of 

positive values of inp  finds traces of under-prediction (0,05%) at 3.5 hours (210 minutes), as 

indicated in the greyed column of Table 16, but this very small percentage shows as 0 in Figure 13.  

 

Three answers for optimal form models. The questions raised can be answered in turn as follows: 
 

A.1.1. Crossing points and the pivot point. The first two of the 3 maintained estimates imply 

damping and the last one amplification, but all 2 (0,24 ; 1,83; 1,80)q    produce some 

crossing points: the presence of crossing points is in practice independent from the side of the 

pivot one happens to be on. Is this the case? 
 

One is misled by Figures 1, 10 and 11 in thinking that linear model under-prediction only 

happens with 1X  : in Figure 12, linear model under-prediction also occurs where 1X  .  
 

A.2.1. How much linear model over-prediction? Linear model over-prediction is rare and too small 

to appear in Figure 12, but pervasive in Figures 10 and 11 at relatively short distances. 
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A.3.1. Enough linear model over-prediction to imply excessive linear revenue forecasts? Linear 

revenue over-prediction is almost everywhere in Figure 12 but concentrated on short trips in 

Figures 10 and 11. In the case of Germany, actual calculations showed that excessive linear 

revenue forecasts prevailed. In Figure 11, the situation is ambiguous but suggests the opposite. 
 

ii) A series of maintained non optimal forms for the Quebec-Windsor Corridor 
 

What happens if alternate assumptions about the BCT value of Time are used? It is important to 

realize that, in this new series studying for the Quebec-Windsor corridor the impact of alternate non 

optimal assumptions concerning the value of 
2q  on the Distance profile, 

2iq  does not vary in a 

ceteris paribus manner from the optimal
118

 value, holding the rest of the estimated (form structure 

and regressor) parameters constant. Rather, for each postulated value of 
2iq , all other parameters 

are re-estimated under the chosen constraint 2,Time  and each variant obtains its own log-likelihood 

value, as reported in Table 16 which deserves preliminary comments. 
 

Table 16. Values of 2,Time , crossing points and  0np   frequency in the Corridor (business) 

Column 1 2 3 4 5 6 7 8 

 Amplification 1T   Pivot Damping 1T   

T  1,80 1,20 1,00 0,00 -0,75 -0,80 -0,85 -1.80 

inp  

Crossing points 0inp   3,5 h None 1,5 h None 4,0 h 2,0 h 1,5 h 1,5 h 

Range119 of  0np   Small None 1,5-3,0 h None 4,0-6,75 h 2,0-6,75 h 1,5-6,75 h 1,5-6,75 h 

 % 0np   0.05% 0% 1.82% 0% 2.00% 2.73% 3.75% 4.10% 

 np   -0,08 -0,27 -0,14 -0,27 -0,26 -0,26 -0,26 -0,26 

Log-likelihood -1058.382 -1059.030 -1063.815 -1071.52 -1078.086 -1078.055 -1077.990 -1075.700 
 

Statistical comment: multiple maxima and crossing points. By definition, the optimal Model 

listed in Column 1 of Table 16, shows the greatest log-likelihood gain as compared to the linear 

reference (from -1068,851 to -1058,382 in the comparison of Columns 1 and 2 of Table 3): it is 

therefore the “most likely” model in a statistical sense. We are now concerned with the values that 

would have been obtained for the Distance profile if the BCT of Time had been fixed a priori but 

the BCT on other variables (applied to Cost, Frequency and Income) had still been optimally 

estimated. As indicated in Table 16, the resulting log-likelihood function is quite flat with respect to 

the Time dimension BCT and even has a local maximum at Column 5. More information is 

provided in Figure 13. 
 

Figure 13. The changing proportion of positive inp  (implying linear model under-prediction) 
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118

 We are not exploring the behaviour of 
inp  in the immediate vicinity of the optimal case, but across new variants. 

119
 In the sample, the minimum rail travel time is 0,75 h (45 minutes) and the maximum is 6,75 h (405 minutes). This 

0,45-6,75 range is unchanged in all columns because all cases are estimated with the full sample of 4291 observations. 
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Numerical comment: the frequency of linear over-prediction  0np  . In Figure 13, the 

percentage of positive inp  varies as one modifies a priori the maintained Time BCT value. 

Reading from right to left, the percentage rises at local maximum points 1,80 and 1,00 and 

monotonically increases beyond -0,75 despite an unchanged mean ( 0,26inp   in Table 16). 

 

Three answers for non optimal form models. The questions raised can be answered as follows: 
 

A.1.2. Crossing points and the pivot point. Are asymmetry and amplification systematically related 

to the existence of linear model over-prediction  0np  ? One can see in Table 16 that over-

prediction can occur on either side of 1T  . It happens there over part of the range of 

amplification values (
2 1iq   does not always over-predict) and over part of the range of 

damped values (
21,00 0,75iq   ). And neither does linearity imply the absence of positive 

inp . Overall, the presence of  0np   is independent from the double pivot point 1T  , as it 

was for optimal form models. 
 

A.2.2. How much linear model over-prediction? We now examine, between the optimal point 

2 1,80iq   and its opposite, 
2 1,80iq  , three domains of assumed values successively 

yielding a small bulge of positive inp  at 
2 1,00iq  , a monotonic emergence of positive inp  

at 
2 0,75iq   and a leftward shift of the crossing point between 

2 0,75iq   and 
2 0,85iq  . 

Linear model over-prediction is therefore sensitive to the value hypothesized for 
2q . 

 

The small bulge of positive inp  at 
2 1,00iq   for trips lasting between 1,5 and 3,0 hours.  

As one moves away from the optimal case presented in Figure 12, the distribution of values of 

inp  is profoundly modified, a new pattern without any positive values establishing itself both 

left and right (Figure 14 at 
2 1,20iq   resembling the logarithmic case and Figure 16 at 

2 0,00iq  ), with identical means at -0,27 of the pattern for the Linear case (Figure 15). The 

latter has both a slightly higher mean at -0,26 and some positive observations in relatively small 

numbers, hence the “small bulge” label. This bulge occurs for trip durations between 1,5 hour 

(90 minutes) and 3,0 hours (180 minutes) and the S-shapes profile resembles that for Germany 

(Figure 10). 
 

The monotonic emergence of positive inp  at 
2 0,75iq   for trips of 4 hours or more. As 

one moves away from the representative logarithmic case (Figure 16), there are no positive 

values of inp  generated until one reaches 
2 0,75iq  : market share gains then emerge for 

relatively long trips (Figure 17) lasting 4 hours (240 minutes) or more. 
 

The leftward shift of emergence between 
2 0,75iq   and 

2 0,85iq   towards 1,5 hours. 

As one moves away from 2 0,75iq  , the emergence continues with a leftward shift in the 

minimum duration from trips lasting 3 hours (180 minutes) or more at 2 0,80iq   (Figure 18) 

to trips lasting 1,5 hours (90 minutes) or more at 2 0,85iq   (Figure 19). Moving towards 

more damped values of 2q  has no effect on the crossing point of 1,5 hours or even on the 

visual appearance of plots (which are not shown) even as the proportion of positive differences 

inp  continues to increase to 4,5% around -1,45 and then falls slowly beyond. 
 

A.3.2. Enough linear model over-prediction to imply excessive linear revenue forecasts? Most 

certainly, all profiles involve linear model over-prediction because significantly higher inp  
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predominantly tend to occur for relatively long trips. In any case, the proportion of positive 

differences remains small: 4,10% at 
2 1,80iq  and 3.96% at squared value 

2 2,00iq  . 

 

Again, the pivot 
2 1,00iq   does not matter in practice, but assumed BCT values do: results are 

consistent with the optimized Eckbote-Laferrière finding based on 0,562T   (Table 4.A, Col. 2). 
 

Figure 14. Corridor Time profile for HSR train scenario, constrained form ( 1,20T  ) 
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Figure 15. Corridor Time profile for HSR train scenario, Linear-constrained form ( 1,00T  ) 
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Figure 16. Corridor Time profile for HSR train scenario, Log-constrained form ( 0,00T  ) 
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Figure 17. Corridor Time profile for HSR train scenario, constrained form ( 0,75T  ) 
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Figure 18. Corridor Time profile for HSR train scenario, constrained form ( 0,80T  ) 
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Figure 19. Corridor Time profile for HSR train scenario, constrained form ( 0,85T  ) 
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Quality of the VIA RAIL 1987 database. The results just shown are obtained with a high quality 

public database and do not depend on complex sampling schemes, as one can get an impression of 

from Figure 20 and Figure 21. In the former, one finds sampled business trips plotted within the 136 

x 136 Origin-Destination matrix of zones defined for the Corridor. In Figure 21, the population 

values reconstructed from the representative weights of individual observations give the non-zero 

Rail Origin-Destination matrix flows (1719 out of 18496 OD pairs). It would be difficult to do tests 

with a better designed database (further details are given in Appendix C). 

 
Figure 20. Spatial distribution, 136 x 136 Corridor OD matrix, 4401 business trip observations 

 
 

Figure 21. Spatial distribution, business trips by rail, Corridor OD matrix, 1719 non-zero flows 

 

6.3. Other benefits from knowledge of curvatures 

Although we have placed explicit emphasis above on Classical and Logit regression models, the 

issue of form arises with similar acuity for other types of regression analysis, such as Poisson and 

various count data methods, also used frequently in transportation, for instance to study accidents.  

 

Fishy Poisson models. Some authors of Poisson models, such as Fridstrøm (2000a), have 

demonstrated the relevance of BCT use to the analysis of road accidents ― even improving the 

Poisson methodology by allowing for the treatment of heteroskedasticity with type (6-D) 

specifications (Fridstrøm, 2000b) ― but other authors avoid this progress in the establishment of 
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correlations. For instance, Dionne et al. (1992) surprisingly refrain from testing the linearity of the 

variables used in their initial Poisson model
120

 of air accidents and insist on advancing for 

publication unchanged and untested form results (Dionne et al., 1997) even claiming in particular 

that results for one of their variables, Maintenance expenditures per aircraft departure, were “very 

important” (p. 394)
 121

 despite six t-statistics averaging 1,71 in absolute value in their principal 

models (2, 3, 5 and 6). Would optimal form estimates have yielded really statistically significant 

coefficients, sign reversals, as in Table 13, or worse? The issue does arise in all count data models. 

 

For our purposes, gross BCT curvatures on Fare and Time variables in Logit regression 

immediately matter in practice because there is little one can do about Distance attitudes and little 

about Risk attitudes. Best fit form values will deeply influence results for all other transformed 

variables as well, even if their immediate effect on forecasts is less dramatic. 

 

Financial pitfalls of Linearity. In our HSR problem, the existence of linear model over-prediction 

and its exact amount make it insufficient to present results based on an untested assumption of 

linearity, or on a priori forms as currently done also for freight in some Corridor models (e.g. 

Patterson & al., 2007)
122

. Generally, HSR project financing plans based on such assumptions are 

more than dubious because linear models tend to over-predict demand and revenues: form tests are 

not a fine tuning issue but a fundamental issue of scientific and practical relevance. 

 

Economic pitfalls of Linearity. But this increased realism of unconditional correlation parameter 

estimates associated with demonstrably different quantity and revenue forecasts and market share 

distance profiles also increases the effort required for the determination of consumer surplus 

changes resulting from HSR investments, should these be of interest beyond financial quantities.  

 

In practice, consumer surpluses are not calculated for compensated demand curves but for market 

demand curves, so the academic objection that the presence of non linearity will at least «perturb 

the log-sum formula» (McFadden, 1998) should not prove insurmountable. As, in any case, a Logit 

model is only a part of the full demand model, it is the evaluation of an integral of (13-B) over a 

certain range where total demand is endogenous that matters (Kikodoro, 2007). Linear Logit 

consumer surplus measures based on changes in the log-sum (Small & Rosen, 1981) will then have 

to take curvature into account, but must be completed by a calculation of surplus variations arising 

from changes in total travel estimated by often using, as Table 7 makes clear, something else than a 

log of the sum. Generally, the exact form will also be decisive in determining whether third degree 

monopolistic price discrimination can be welfare enhancing or not (Aguirre et al., 2010). 

 

We will not deal here with an important practical difficulty recently raised by Beuthe (2010) who 

studies problems that may occur in a careful analysis of the demand function over its full range 

when some BCT have powers greater than unity whereby shifts caused for instance by improved 

service quality, such as speed, formally imply infinite changes in consumer surplus, contrary to 

values smaller than unity for which the additional surfaces are bounded. This problem requires 

special treatment beyond the reach of this survey. 

                                                 
120

 In late 1991, the model was proposed to, and badly received by, the Canadian Royal Commission on National 

Passenger Transportation where it was felt that its untested linearity was inadequate to establish anything. The authors 

subsequently refused to consider the BCT form tests easily performed on explanatory variables of any Poisson model. 
121

 In their preferred Model 2 of Table 2, the t-statistic of the intercept is (-5,12) and that of this variable is (-1,66); in 

the corresponding Model 5 of Table 3, the t-statistic of the intercept is (-2,35) and those of the same variable broken 

down between small and large firms are respectively (-2,46) for the small and (1,55) for the large firms. All other 

continuous variables, such as Hours flown and Speed, are also entered linearly and without form tests.  
122

 The authors use a sample of 5670 observations from an SP shipper survey carried out in 2005. The Mixed Logit 

formulation apparently uses the a priori assumption that the product of the natural logarithm of cost and distance is 

normally distributed and the 3 alternatives appear to represent truck and the two competing railways. No justification is 

given for the log-normal assumption and other forms (e.g. square root-normal, etc.) are not considered. 
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7. The QDF Framework with Dogit and IPT-Logit cores 

 

Defining building blocks: cores and representative utility functions. In this paper, a core consist 

in a set of modal utilities 0iU   appearing jointly in the Mode Split and in the Utility term U of the 

Total demand component of the QDF Modal demand architecture. 

 

Up to this point, we have featured a Modal utility defined by the Logit quantity, but others are 

useful to define alternate families and will be explained shortly by giving the reader a sense of their 

origin and meaning before we document their use and relevance to functional form structures: 
 

Table 17. Modal utilities or quantities for the QDF framework 

Core Modal utility or Quantity 0mU   

Logit exp( )mV  

Standard Dogit 
1

exp( ) exp( ) , 0
M

m m j m

j

V V 


   

Generalized Dogit exp( ) exp( ) , 0 and 0
M

m mj j mm mj

j m

V V  


    

LIN-IPT-Logit  
1/

exp( ) 1  , 0 and 1
m

m m m m mV


        

BT-IPT-Logit 
 exp( ) 1

exp  , 0

m

m m

m

m

V







   
 

  

 

 

For any Quantity defined in Table 17, the representative utility function (RUF) proper can in 

principle obtain one of two specifications: 
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(Generalized Linear) 

 

and we have up to this point featured special cases, limiting ourselves
123

 to 
 

(35-C) 
i
in is( ) ( )i

i i0 in n is s

n s

V X X
        (Standard Box-Cox) 

(35-D)  0

i i

i i in n is s

n s

V X X     
 

(Standard Linear) 

 

and to monotonic applications of the BCT to variables, thereby excluding on purpose 
 

(36-A)      1 2

0 1 2

yy X X
  
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(Turning effects) 

(36-B) 
   1 2

0 1 2iV X X
 

       
 

analysed in detail in Gaudry et al. (2000) and sometimes applied outside of transport (e.g. Heckman 

& Polachek, 1974) or in transport with models of type (6-A), such as Tegnér et al. (2000), but 

                                                 
123

 Some are extremely rarely found, for instance (35-D). For a comparison of (35-B) and (35-D), see Laferrière & 

Gaudry (1992) where an excellent 1976 database of 211 morning peak observations on OD flow shares in Winnipeg 

made it possible to estimate the mode-specific constants for car and transit and their envelope curvatures within a LIN-

IPT-L, starting from a previous specification developed by Cléroux et al. (1981). 
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unknown in those of type (6-B) where prevalence of linearity militates against them and dignified 

symmetric response curves could not conceivably go up and down, for instance with respect to Age. 

 

Our intents in imposing these Quantity and RUF restrictions in previous sections were to put the 

emphasis on the potential asymmetry of Logit response curves because Logit cores dominate 

practice and because IIA-consistent representative utility functions suffice to make our case. But the 

new quantities enrich modelling possibilities in three ways that deserve examination as they might 

impact our stand: 
 

(i) IPT-Logit quantities solve in principle the practical problem of identification of some 

parameters, in particular those of alternative-specific constants, met when Logit or Dogit 

quantities are used; 
 

(ii) Dogit and IPT-Logit quantities allow for thick tails in response curves, an issue of modeller 

ignorance; 
 

(iii) IPT-Logit quantities make it possible to search for non linearity not only of variables describing 

alternatives within RUF but also of Logit quantities, an issue of the allocation of non linearity 

present in response curves.  

 

The identification of all alternative-specific constants. The identification problem arises because 

a reference alternative r must be found for the constant and the socioeconomic variable in  
 

(35-D) 

   i

i i0 r0 in n is s rs s

n s

V X X X           

(Standard Linear) 
i

i i0 in n is s

n s

V X X      
 

 

and only for the constant if alternative specific BCT are applied to the socioeconomic variable Xs. 

 

In mode choice analysis, discussions have centered on how many of the identifiable M-1 

coefficients should be retained (Tardiff, 1978) and the problem has consistently nagged researchers 

(Bierlaire et al., 1995). But the same problem seems intractable in path choice problems. If the 

application is binomial and the reference alternative becomes “any not chosen”, as in the tracé 

choice application by McFadden (1968 or 1976a), the estimate effectively becomes one of 

differences between constants that are random variables (and estimators are necessarily biased) 

because there is no natural way to label alternative paths as there exist naturally meaningful ways to 

label modes. This predicament does not change if the application is multinomial and the 

identification of all coefficients of alternative specific constants becomes relevant as indicators of 

misspecification of RUF. 

 

But use of IPT-L cores offer a solution, and the identification of all M coefficients of constants is 

made possible by IPT-L envelopes, as Laferrière (1988, 1999) demonstrated in practice for specific 

constants of air paths (defined sets of itineraries of identical Time and Fare characteristics) by OD 

pair in a Canada-wide model of Air demand built with a 100% sample (16 million individual trips) 

of domestic air trips made on Air Canada and Canadian Pacific Airlines in 1983. 

 

The issue of asymptotes, thick tails, or modeller ignorance. Quite often, Logit cores fit badly at 

the ends of response curves. The first non-Logit core to address this problem of modeller ignorance, 

essentially determined by sparse RUF Logit specifications
124

, is the Standard Dogit core (Gaudry & 

Dagenais, 1977 or 1979a). It adds i  parameters in the i
th

 preference function and the Generalized 

                                                 
124

 A predominant form of RUF imperfection is incomplete lists of factors but there is no way to predict consequences 

for possible ecological aggregation error in share models and possible heterogeneous idiosyncracy dominance in 

discrete choice models, 
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version transform these indices into 
ij  under certain conditions applicable to alternative specific 

constants but not to generic mode-abstract constants (Gaudry & Dagenais, 1981). 

 

In both Dogit cases, the asymptotes of response curve tail ends will be modified but the above 

mode-specific coefficient under-identification problem will remain unsolved
125

 and, due to the 

introduction of “relevant” cross-terms to own-mode utilities, neither model will generally be IIA 

consistent, although the issue is “dodged” because IIA-consistency could be present for some pair 

of alternatives if their   parameters are zero. Dogit models therefore avoid IIA consistency without 

resorting to cross terms in LOS variables, the usual reason for holding IIA inconsistency as 

untenable (Samuelson, 1985). 

 

Upon reception of the initial version of the Standard Dogit formulation (Gaudry & Dagenais, 1977, 

October), McFadden realized that he had formulated a few months before (McFadden, 1976b, 

December) an identical model which he had not made public because he felt that the log-likelihood 

function had lost its theoretical unimodality
126

, already noted above as an obstacle to the use of non 

linear forms. Ben-Akiva, aware of McFadden’s, then wrote another document (Ben-Akiva, 1977 

November) later diffused in “substantially modified version” (Ben-Akiva & Swait, 1984) and later 

with a modified title (Ben-Akiva & Swait, 1987) where he called the Dogit model the “parametrized 

captivity model”, recently shortened to “Logit captivity model” (Walker & Ben-Akiva, 2011). 

 

If a new name had been given to every new derivation of the Gravity model or of the Logit model, 

taxonomic confusion would reign. Fortunately, the “compressed/saturated binary Logit” for rail 

(Westley, 1979) was rapidly shown to be a special case of Dogit (Hensher, 1982) and there was no 

further confusion between derivation and name when the Dogit was applied to OD pairs instead of 

modes (Chu, 1990), or more generally (Brown, 1980; Chu, 2011), and derived as a “brand loyalty” 

model even if buyers are not perfectly captive to one brand (Bordley, 1989, 1990) and more 

generally (Sonis, 1992)
127

, or when its statistical properties were studied by Williams & Ortúzar 

(1982) among others (Fry, 1988; Fry & Harris, 1995). 

 

This captivity derivation and interpretation of the Standard Dogit has some appeal because the 

simplest way to understand this model is to consider that one is drawing from a mixed distribution 

(McFadden, 1981) with two populations: one captive to any alternative in proportion Ci and the 

remaining non-captive and exercising a choice according to the Logit model, as in: 
 

(37) 
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This interpretation of the i  parameters parallels the interpretation of the “basic consumption” 

parameters found in Stone’s (1954) linear expenditure model and leads to the same ambiguities. 

                                                 
125

 And some normalization, based on choosing a reference alternative, is required. In Table 17, the Generalized Dogit 

is written with a normalization rule that makes setting all non diagonal values of mj  to zero directly yield the Logit 

and equal by row the Standard Dogit. 
126

 Conversation in Marc Gaudry’s office, before Daniel McFadden’s October 26, 1977 Université de Montréal seminar. 

Since then, multiple maxima have not yet been found in practice, either with aggregate or with discrete data. 
127

 Sonis’ starting point was that the multiplication of some specifically chosen Markovian matrices on the vector of 

choice probabilities (used to explain innovation diffusion and dynamic choice) for teh Logit model gives the vector of 

choice probabilities for the Standard Dogit model. 
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Indeed, in a number of empirical studies of linear expenditure models, Solari (1971) has found that 

the best fits were obtained when certain of these parameters were negative
128

. He therefore 

reinterpreted such negative values as indicative of “superior” goods. In our strictly comparable 

situation, are we to say that negative 
i  values are indicative of a free population, positive ones of a 

captive population and the rest of a normal population? In the same vein, a limited number of 

experiments involving four intercity modes in Canada (Dagenais et al., 1982a, 1982b) suggested 

that better fits were obtained when the 
i  parameters were not constrained to be positive. 

 

In Table 17, we therefore constrain Dogit parameters to be positive, avoid making sense of negative 

captivity and negative basic needs, and adopt the “modeller ignorance” interpretation consistent 

with incomplete regressor lists in RUF presumed to contain the researcher’s “knowledge” or 

information
129

. The non negativity constraint also guarantees non negative Modal utilities Um, as do 

other constraints in Table 17. We illustrate such flexible asymptotic non negative ignorance limits 

0i   in Figure 22 with a case where Linear Logit symmetry is maintained between the new limits. 
 

Figure 22. Linear-Logit vs Standard-Dogit 

 

 

The Generalized version (Gaudry & Dagenais, 1981) is close in spirit to Restle (1961) and akin to a 

transactions cost approach where the relevance of other alternatives depends on some measure of 

similarity/dissimilarity (to use Restle’s language) implemented for instance by Cascetta et al. 

(1996) who introduce in the RUF of an alternative an average value for other alternatives. 

 

Combining modeller ignorance and allocation of non linearity. The second non Logit core to 

contain flexible modeller ignorance limits is the IPT approach (Gaudry, 1978 or 1981), where use is 

made of Tukey’s   location parameter (Anscombe & Tukey (1954) referred to in Tukey, 1957) 

used in (6-C). In the direct BT garb of (6-C), this   applied to variables is rarely successful except 

as a geometric device to avoid natural coordinates and make them endogenous, or as a diagnostic 

tool (Atkinson, 1983). But in the indirect BTG garb of (6-C), the same   applied to functions 

acquires further meaning as an ignorance parameter. Applied to Logit quantities, an IPT-Logit core 

permits to allocate non linearity elsewhere than to variables of RUF functions. Despite a successful 

                                                 
128

 During his Université de Montréal visit around 1975, he quipped that he had never seen a sufficiently disaggregated 

model yielding only positive “basic need” indicators. 
129

 In a ten-variable 5-mode urban model for São Paulo, it is found that, if three of the modes are assigned 
i , the log-

likelihood only gains 3,6 points (Swait & Ben-Akiva, 1987). Clearly, the more information is provided, the weaker the 

presence of modeller ignorance due to a better explanation of tails. 
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application outside of transportation of the LIN-IPT-Logit
130

 core (Montmarquette & Mahseredjian, 

1985), IPT-Dogit or IPT-Logit cores have never been derived. We consider IPT-Logit cores here 

and neglect IPT-Dogit cores. The illustration in Figure 23 modifies the symmetry and the 

asymptotic limits of the Logit core specification
131

. 
 

Figure 23. Linear-Logit vs Box-Tukey-Inverse-Power-Transformation-Logit 
 

  

 

Do enriched core results confirm those of Tables 7-9? The question is whether enriched cores all 

containing the Logit core as a nested special case should change the analysis, made in Tables 7, 8 

and 9, of LOS non linearity estimated under certainty assumptions. To answer it, consider Table 18. 
 

Table 18. BCT estimates for Time & Cost variables in passenger models with non Logit cores 

Column 1 2 3 4 5 6 7 8 9 10 11

Core Envelope Ignorance

T F T -F T F T -F T F T -F  φ  μ

44. Canada 1976 (2 m) 0,36 0,79 -0,42 0,23 0,70 -0,47 n.a. Table 2, Col. DU and LU

Log-likelihood n.a. Weak Gaudry & Wills, 1979

45. France + Channel (3 m) -0,62 -0,62 0,00 -0,42 -0,42 0,00 Table 10, Col. 1.2 and 1.5

Log-likelihood Strong Strong Gaudry et al . 1998

46. Canada 1976 (4 m) -0,01 -0,01 0,00 1,00 1,00 0,00 Table 4, Col. 2 and 6

Log-likelihood Moderate Moderate Gaudry, 1990 or 1993

47. Montreal 1970 (2 m) 0,66 4,21 -3,56 0,56 4,50 -3,94 n.a. Table 1, Col. U and U-U

Log-likelihood n.a. Weak Gaudry, 1980

48. Santiago 1983-1985 (9 m) 1,63 0,35 1,28 1,84 0,89 0,95 2,29 1,27 1,01 Col. 3, 4, 7

Log-likelihood Strong Strong Tran & Gaudry, 2009b

202,97

Logit Standard Dogit BT-IPT-Logit

Intercity

Urban

-499,345

Source

-837,93 -815,92 -817,82

-490,47

133,31

-5481,88

134,52

-6246,86

203,32

 

Top models beyond 40. We assume, and will demonstrate shortly in Table 19, that enriched cores do 

not modify the meaning of BCT parameters used on LOS variables. 

 

The analysis of Table 18 results therefore show that: (i) core enrichments do not significantly 

change the estimates obtained with a Logit core except for Model 48 (Santiago de Chile) where 

relative damping fluctuates in the range of slope independence (T–F) = 1,00; (ii) there is more 
 

                                                 
130

 It includes  ( ) exp expf x x     related to the so called (Johnson & Kotz, 1970, p. 273) log-Weibull 

 ( ) exp expf x x      if =0 m  and 0m  . 

131
 Figures 20 and 21 are generated with the same Model 0 (see Table 12) used for Figure 1 and specified in its vicinity. 



 84 

Table 19. QDF demand elasticities and slopes for five cores (variable X in RUFm) 

(38) Logit 

m   1
U

mX mX

TOT
U X m X m

TOT

U
X P X P

T


 


     

m  1
(1 )

U

mX

TOT
X m U m m

TOT

U
X T P P

T





   

  
 

 

(39) Standard Dogit 

m  
1

11 1

exp( )(1 )
(1 )(1 )

1 exp( )exp( ) exp( )

mX

U mX

TOT

M

X m m

X m mm
U MM M

TOT
m j mm m j

jm j

X V
U X P

T
V VV V


 



 
 







 


 


 

  
 



 

 

m  
1 1

11 1

exp( )(1 )
(1 )(1 )

1 exp( )exp( ) exp( )

U

mX

TOT

M

m m

m mm
X m U MM M

TOT
m j mm m j

jm j

V
U P

X T
T

V VV V









 



 

 

 
 

  
  

   
   



 

 

(40) Generalized Dogit 
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(41) Linear Inverse Power Transformation-Logit 
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(42) Box-Tukey Inverse Power Transformation-Logit 
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absolute amplification (see braided cases)
132

 than in Tables 7 to 9; (iii) Model 47 for trips (all 

purposes) in the Montreal area is the first among 11 comparable (two LOS BCT) urban models not 

to show absolute Time amplification. 

 

We may note in Table 21 of Appendix B how the m  expressions of Table 19 are affected when a 

LOS variable
133

 of interest X appears in more than one RUF in accordance with (35-A), rather than 

on the lines of (35-C) assumed in Table 19. 

 

Making sense of curvatures. We now have to confirm that more complex specifications of cores do 

not change our previous interpretation of BCT LOS values. For this, we first recall in Table 19 the 

Logit core elasticities m  and demand slopes m  from (13-A)-(13-B) and, after a simplification of 

indices to make the expressions apply to any mode m, compare them to corresponding expressions 

obtained with the four other enriched cores. 

 

One can immediately see that former definitions of damping, independence and amplification ─ 

whether absolute in (13-D) to (13-F) or relative in (15-C) to (15-E) ─ follow through, as does the 

definition of the VOT, either without Distance explicitation in (14-A) or with Distance explicitation 

in (14-B). Together, this gives for memory Table 20. 

 
Table 20. Absolute and relative effects defined by values of LOS BCT or by their differences 

 
T  or F   

T F   

Effect 

of 

∆LOS 

on the: 

<1 =1 >1  >0 =0 <0 

 →  \ → \  →   ▲ ═ ▼ 

damped none amplified  damped none amplified 

slope of demand curve [from (13-D) to (13-F)]  value of Time [from (15-C) to (15-E)] 
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 Model 44 aggregates the three public modes by a procedure based on averages superseded since by the log-sum 

aggregator. If no aggregation is carried out with the same data, as in Model 1 of Table 7, amplification disappears. 

Among all 48 models listed in Tables 7-9 and 18, Model 44 it is the only one to use aggregates of modes. 
133

 The derivations of the elasticity values are found in Tran & Gaudry (2010a). 
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8. Conclusion 
 

We have argued that, as envisaged High Speed Rail (HSR) projects typically anticipate a reduction 

by half or more of existing rail Travel Time, ridership and revenue forecasts depend critically on the 

curvature of the rail demand curve defined with respect to both Fare and Time levels of service 

(LOS), in addition to Frequency. We have discussed these curvature issues and derived forecasts 

within the Quasi-Direct Format (QDF) architecture in use since the US Northeast Corridor 

Transportation Project of the 1960’s, a product of Total Market size and Mode split components. 
 

We have studied curvatures with Box-Cox transformations (BCT) applied to the variables of both 

component models but our discussion has been focussed on the Logit piece used in representative 

QDF structures because modal diversion effects of new HSR services tend to dominate the slower 

long-term induction effects of increased market size, so that net discounted project results are 

driven by Linear Logit specifications prevailing to this day in transport, but also elsewhere. 
 

Our analysis started with a reference summary of results from three Canadian mode choice models 

formulated in 1976-1978 and in 1992-1994 for the purposes of forecasting the effects of major 

infrastructure changes, respectively new airports in Southern Ontario and faster rail in the Quebec-

Windsor Corridor. We have emphasized how HSR revenue maximization of rail Fares and Speeds 

obtained under hypothesized Linear forms then yielded higher revenues than under data determined 

optimal Box-Cox forms even if their market shares were higher on relatively long distances. The 

rest of the paper interpreted or positioned these results among others and further documented 

Corridor model forecasts. 
 

Concerning their interpretation, we have pointed out that, although basic consumer demand theory 

does not constrain admissible values of BCT in Total demand and Logit Mode choice components 

of modal demand models, actual estimates are in fact generally compatible with “Cost damping” 

claims: (a) Time and Cost sensitivities (expressed as first partial derivatives of the demand function) 

typically fall with Distance in passenger and freight markets, except in urban passenger markets 

where Time sensitivity almost always increases; (ii) relative sensitivities (the Value of Time) 

always increase with Distance, irrespective of whether the absolute value of slopes falls at a 

decreasing (damped) or at an increasing (amplified) rate, in the 40-some surveyed models built by 

some 30 researchers for 10 countries. Such empirical regularities establish a fundamental difference 

between intercity and urban markets based on the second derivatives of demand functions. 
 

We have further suggested that such real gross BCT power value sensitivity profiles estimated 

without taking the attitude to risk into account could in fact reflect two effects that, as shown in 

recent seminal work on Rank Dependent Utility (RDU), can be identified by products of power 

functions of Fare or Time, to wit a simple power to determine the attitude to outcome risk 

(probability) and a BCT power to determine the attitude to outcome proper. We have also 

reinterpreted recent models making successful use of interactions between a Distance variable 

raised to a simple power and a LOS variable (especially Travel Time) sometimes raised to a BCT 

power as identifying, also by a product of functions, an “attitude to Distance” that allows for an 

explicit breakdown of gross attitudinal parameters between attitude to distance and attitude to 

outcome elements. 
 

We have implied overall that, beyond mere fit and other demonstrated benefits, untested linear 

forms of Standard Logit utility function variables are theoretically unexpected as representations of 

price-time utility maps, statistically unsustainable in many samples ranges where prima facie gross 

cost or time damping or amplification prevail in absolute and relative senses, practically biased as 

conditional bargaining games to play with data, and often demonstrably unsound or misleading in 

the production of HSR passenger and revenue forecasts, and no doubt elsewhere as well.  
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9. Appendix A. On estimating simple powers instead of BCT 

 

We document here the statement, made in this main body of the text, that the QDF structure (7-A) is 

preferable to the CES Armington structure in part because the latter, based on simple power 

transformations, notably presents a number of estimation difficulties which do not arise with BCT. 

We explain that the safe way to obtain CES power values is to estimate BCT transformations, first 

and foremost in order to be certain of obtaining power estimates that maintain the order of the data.  

 

To start, it is obvious that maximization of the Log likelihood of the dependent variable in models 

with explanatory terms such as (6-G), and more generally models of form (7-B), admits of 

degenerate solutions if powers like U or  are set at zero: to avoid such model collapse, users of (6-

G) typically force the elasticity of substitution  to be greater than 1, thereby excluding a domain of 

values potentially consistent with the data. But another, more serious, problem lurks even with 

constrained simple power values because, in addition to lacking important continuity at zero, simple 

powers do not generally preserve the order of the data. We illustrate the ordering of the data first 

and demonstrate afterwards the continuity at zero assumed in (6-C) above. 

 

Consider Figure 24 from Johnston (1984, p. 63), where two data values, 10 and e = 2,84128, are 

transformed in three ways: in (a) by a simple power transformation y

, which leads to an inversion 

of values at point (0,1); in (b) by y

/, which maintains the order but causes a discontinuity at  = 0; 

in (c) by (y
/, which preserves both continuity at zero and the order of data values

134
. 

Basically, all Constant Elasticity of Substitution (C.E.S.) models pose these estimation problems. 
 

Figure 24. Illustration of the continuity at 0 and of the order preservation of the BCT 

 
 

Concerning continuity at zero, we want to prove that the common Box-Cox transformation of a 

strictly positive variable y  is continuous at 0 and is more precisely equal to the natural logarithm of 

y , as stated in (6-C):  

                                                 
134

 As e10 , the order is modified in (a) at the point where   changes sign, because 10 0e  if      and 

10 0e  if     ; but it is preserved in (c) because [(10 1) / ] [( 1) / ]e      for any value of  . 
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(35) 
y 1

ln y if 0,
 

 


 

 

a result that we derive in two ways:  
 

A. By application of L’Hospital’s rule, namely 
 

(36) 
0 0 0

(y 1)
y 1

ln y
y lny

1lim limlim


  

 






 
    

             

 

 

B. By a Taylor expansion of f ( ) y , y 0 and         , around the point 0 : 
 

(37-A) 
2 3

f ( ) f (0) f '(0) f ''(0) f '''(0) ...
2! 3!

 
        

 

Indeed, given that here 
 

 

   

   

2 2

3 3

f '( ) y ln y f '(0) ln y

f ''( ) y ln y f ''(0) ln y

f '''( ) y ln y f '''(0) ln y







   

   

   

, 

 

we can rewrite (37-A) as:  
 

(37-B)      
2 3

2 3
f ( ) 1 ln y ln y ln y ...

2! 3!

 
        

(37-C)      
2 3

2 3f ( ) 1
ln y ln y ln y ...

2! 3!

   
   


 

(37-D)      
2

2y 1
ln y 1 ln y ln y ...

2! 3!

    
    

  
 

 

the last form of which, if 0  , effectively reduces to:  
 

(37-E) 
0

y 1
ln y









 

 

The Box-Cox transformation used in the QDF framework (7-A) avoids all three critical pitfalls: 

degeneracy, discontinuity at zero and data order perturbation. It is therefore unwise to estimate CES 

models, be they production or demand functions, as simple power models unless great care is taken. 

In that sense, BCT estimation is the correct way to estimate all simple power models, and notably 

CES specifications; it is more “idiot proof”, lest one prefer risk or have no choice because, as in 

RDU models of type (17-A), a BCT choice for the function    : 0,1 0,1   would not maintain 

the “capacity” of the distribution, namely the property that the sum of probabilities be equal to one. 
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10. Appendix B. On the Transport, Hicksian and Slutsky decompositions 

 

In this appendix, we first show how the transport and classical economic decompositions can be 

presented, at least for some special cases, on the same graph, but we do not work out the structure 

of indifference maps required, for each decomposition, to contrast the visual implications of 

constant marginal utility and more general indifference curve assumptions. 

 

This superposition of decompositions is made under the assumption that type (5) Modal utility 

functions contain only own-mode characteristics. But, in a second step, we point out, using utility 

functions of type (8-A) where cross-modes may be present, that the sign of the transport Diversion 

effect can change when non separable utility is allowed and the Mode split model structure brought 

back into the traditional fold of sensible microeconomic demand system postulates for close 

substitutes. 

 

A 45° final budget line simplification. Assume in Figure 25 that combinations of goods 1 and 2 

are utility maximizing bundles and that, following a lowering of the price of mode 1, the budget line 

passing through combination 2 is at a 45° angle. This assumption makes it possible to superpose 

parrallel lines to this final budget line, for instance a parallel that can be made to go through point 1, 

and a constant Total trip line like T1 or T2 from Figure 6. 
 

Figure 25. Three decompositions of the variation in Total demand from point 1 to point 2 
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This superposition is tantamount to assuming the visual identity of Slutsky’s equal budget line to a 

specific equal total trip (equal total output) line of transport models: it makes it possible to compare 

on the same graph the three decompositions of interest. 

 

Classical micro-economic decompositions. To define Slutsky’s substitution effect, one needs to 

find the point of maximum utility SS on the hypothetical budget line which reflects the new relative 

prices prevailing at point 2 but that makes it possible to purchase former combination 1. Compared 

to point 1, point SS is not at equal output but at equal budget (purchasing power). The movements 

{[1 → SS] ; [SS → 2]} are the substitution and income effects that result from Slutsky’s 

decomposition. 

 

To define Hicks’ substitution effect, one needs to find the tangency point HS between the initial 

indifference curve that determines the choice of point 1 and the minimum budget line incorporating 

the prices prevailing at point 2. Compared to point 1, point HS is not at equal budget or output but 

at equal utility. The movements {[1 → HS] ; [HS → 2]} are the substitution and income effects that 

result from Hicks’ decomposition. 

 

We have conjectured in the main body of the paper that the ratio of Induction to Diversion that 

obtains in (16), being independent from prices (and from Income), should have analogous 

consequences for the ratios of Income to Substitution effects defined by Slutsky and by Hicks, but 

we shall not attempt to work this out here as it would require going in depth into the shape of 

indifference curves, an issue already partly explored before in Bruzelius (1979, Ch. 3). 

 

Suffice it for our purposes to point out the most important differences among the three groups of 

effects: (i) the Induction effect is necessarily positive, which need not be the case for the Income 

effects it resembles, even if we expect them to be usually so; (ii) Slutsky’s and Hicks’ Substitution 

effects are necessarily positive, which need not be the case for the Diversion effect in general even 

if we expect it to be so (as shown in Figure 6). We now turn to this unexpected feature of Diversion. 

 

On the sign of the Diversion effect. If the double IIA blinkers associated with Origin-Destination 

and Mode indices of the QDF structure used above are removed, the sign of the Diversion effect can 

indeed change. To show this, we recall from (1)-(3) in Section 2 that Tijm, the Demand for a 

particular mode m from i to j, is obtained as a product of a model of the Total transport market by 

all modes TijTOT and a model of Modal split Pijm. Neglecting ij subscripts, this can be restated for 

convenience as 
 

(43-A)    ,TOTT T Pm m   
 

or, more explicitly, as: 

(43-B)  
m

m c d m m m 1, ... , MT f ( A , A ,U ) U / U , , 
 
 
 

  

 

where the model of Total demand by all modes contains vectors of activity variables Ac and Ad , 

such as Population and Income, and an index U of the utility of travel by all modes, called the 

coupling term or U term, was defined by the denominator of the mode split model: 
 

(43-C) m

m

U U , 0mU  , 

 

where each Modal utility Um term summarizes the attractiveness of a mode. This framework admits 

of many Mode split models, either aggregate (explaining market shares) or discrete (explaining 

categorical individual choices) but we have concentrated above on IIA features within the Mode 

choice component, only own-OD terms being considered (no cross-OD terms). 

 



 91 

Because (43-A) is a product of models, the elasticity of the Modal demand (the left-hand-side 

variable), can be expressed as a sum of their elasticities: 
 

(43-D) [ of Demand for Mode m] = [ of Total Demand for all modes]+[ of Modal Split of Mode m], 
 

but it is important to note that, in coupled products of paired models, a given explanatory variable 

kX , such as consumer Income or the Price of a mode, might well appear in all three terms (A), (C) 

and (D) distinguishable by rewriting (43-D) in a more general and explicit fashion as: 
 

(43-E) 

( , ) ( , ) ( , ) ( , ) ( , )

      (A)            (B)         (C)

(F)  (E)    (D)

m k TOT k TOT k m kT X T X T U U X P X      



, 

 

two particular cases of which can be considered: 
 

a. If kX appears only in the subset of kX  determining Total demand, but not in U , then 

( , )kU X  and ( , )m kP X  are equal to zero and the Modal and Total elasticities are identical: 
 

(43-F) ( , ) ( , ) ( , )m k TOT k TOT kT X T X T X     
 

b. Alternately, if kX appears only in U , but not in the subset of kX  determining Total demand, 

then ( , )TOT kT X  disappears and the modal elasticity reduces to: 
 

(43-G) ( , ) ( , ) ( , ) ( , )m k TOT k m kT X T U U X P X     , 
 

selected above to write demand elasticity formula (13-A) and study its embedded slope (13-B). 

 

For the general structure (43-E), the sign of the modal elasticity ( , )m kT X  calculated as (F) will 

depend on the signs of the four elasticities ( , )TOT kT X , ( , )TOTT U , ( , )kU X  and ( , )m kP X . Since 

Total demand TTOT is an increasing function of the utility index U, the elasticity ( , )TOTT U  is 

necessarily positive. Assuming ( , )TOT kT X  has the same sign as ( , )kU X , the sign of the Modal 

elasticity will be given by a combination of signs of the two elasticities ( , )kU X  and ( , )m kP X  

and two cases can be considered: 
 

c. If kX appears only in mode m, but not in other modes, then ( , )kU X  and ( , )m kP X  have 

always the same sign:  
 

(43-H) 
1

( , ) (1 ) (1 )m k m k m k
m k m m

k m k m k m

P X U X U X
P X P P

X P U X P X U


  
    
  

, 

 

d. If kX appears in mode m and in at least one of the other modes, then ( , )kU X  and 

( , )m kP X can have the same or opposite signs, as should be clear from:  
 

(43-I)    

   

1
( , )

, ,

1
, ,

m k m k
m k m

k m k k m

m k k
m k k

k m k

jm
k j k

j mm m

P X U U X
P X P

X P U X X P

U X U X
U X U X

X U X U

PP
U X U X

P P



 

 


   
   
   

 
   
 

   
    
   



, 

 

In this case, due to the presence of a second term which is a weighted sum of all cross 

elasticities, the signs of ( , )kU X  and ( , )m kP X  clearly need not be the same: the sign of the 
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Modal elasticity does not necessarily follow the sign of ( , )kU X  in such cases, but this is 

difficult to detect from Table 21
135

 except by imagining higher cross effects than own effects. 

 
Table 21. QDF demand elasticities for five cores (variable X in RUFm and in other RUFj) 

(44) Logit 

m   
1

1
U

jX jXmX

TOT

M M

U jX j mX m j jX

j j mTOT

U
X P X P P X

T


 


   

 

     

(45) Standard Dogit 

m  

1 1

11 1

(1 ) exp( ) (1 )

1 exp( )exp( ) exp( )

jX

U

TOT

M M M

j jX j m m m j

j j j m

U MM M
TOT

m j mj j j
jj j

X V A P P A
U

T
V VV V







 





  

 

  


 

  
 

  

 

, 

where 

1

exp( )jXmX

M

m mX j jX j m

j

X X V VA


  


  
 
 
 

  
1

exp( ) exp( )jX jX

M

j jX j m j jX j m

j

A X V V X V V
 

  


   
 
 
 

  

(46) Generalized Dogit 

m  

1

1

exp( ) exp( ) (1 )

1 exp( )exp( ) exp( )

jXmX

U

TOT

M M M

mX m mj jX j m m m j
m j m j m

U MM M
TOT

mj j mm mj j
j mm j m

X V X V B P P B
U

T
V VV V







  





  

 

 
   

  
 

  
 

  

 

, 

where 

exp( )jXmX

M

m mX mj jX j m

j m

X X V VB


  


  
 
 
 

  exp( )exp( )jX jX

M

j jX mj jX j m

j m

j mX X V VB V V
 

  


  
 

 
 

  

(47) Linear Inverse Power Transformation-Logit 

m  

 

   

1
1

1

1/1

1

(1 )exp( ) exp( ) 1

exp( ) 1exp( ) 1

mX
m

U

mTOT

m

MM

m m m jmX m m m
j mm

U M

TOT m m m
m m m

m

C P P CX V V
U

T VV










 


  







      
    

      
   




, 

where 

 
1

1
exp( ) 1 exp( ) mX

mm m m m mXC V V X


 


   

1
1

exp( ) 1 exp( ) jX
j

j j j i jXC V V X
 



     

(48) Box-Tukey Inverse Power Transformation-Logit 

m  

 
1

1

exp( ) exp( ) (1 )
U

mmX

TOT

M M

U mX m m m m m m m j

m j mTOT

U
X V V P D P P D

T





  



 

     , 

where 

 
1

exp( ) exp( )m mX

m m m m mXD V V X
  


   

1

exp( ) exp( ) exp( )
j jX

j j j j jX jD V V X E
 

 


     

and  

 
( ) ( )

exp( ) exp( )
j m

j j m mE Vj V
 

         

 

 

                                                 
135

 The detailed derivations are found in Tran & Gaudry (2010a). 
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11. Appendix C. Coverage of business trips, VIA RAIL 1987 database 
 

Figure 26. Other Corridor 136x136 OD matrices, business trips 

A. Spatial distribution, trips by air, 1392 non-zero flows 

 
B. Spatial distribution, trips by bus, 1156 non-zero flows 

 
C. Spatial distribution, trips by car, 1792 non-zero flows 

 
D. Spatial distribution, trips by the 4 modes, 1793 non-zero flows 
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12. Appendix D. On the coupling term and OD-type consistency with IIA 

 

We have addressed, somewhat marginally, the issue of consistency with IIA arising from the use of 

only own LOS variables in Modal utility functions but have said little about OD-type consistency: 

as stated in Section 2, our formulation of the QDF sidesteps the issue and assumes that each OD 

flow is essentially determined by variables that share the indices of the dependent variable. The 

reason for this is that our emphasis has been on the relevance of form estimation; but we do not 

want to give the impression that spatial competition is properly modelled in our examples. 

 

Impedance, Distance or Utility in logarithmic form. We have also pointed out in Section 2 that 

trade and transport models were closely related and have discussed in Section 5.4.A the proper form 

of the coupling term in QDF transport applications. It is therefore instructive
136

 to compare the 

common part of trade and transport model specifications, namely component (6-A) explaining Total 

flow by origin-destination pair, fleshed out simply as: 
 

(49) (Flow ij ) ← ( Activities i and j ; Socioeconomic i and j, ; Ease of interaction ij) 
 

which, since Carey (1858-1859) proposed it in strict Newtonian form to describe spatial human 

interactions, was in fact first used in transportation by Lill (1891) on Vienna-Brünn-Prague 

passenger rail flow data without forcing the Distance impedance term to be raised to the square 

power Newtonian value. It could be argued that the extended multiplicative “Gravity” model 

applied to human interactions (e.g. to trade, transport or communication flows) and usually 

estimated by Ordinary Least Squares in logarithmic form and without double constraints on origin 

or destination “trip ends”, has since been the most robust model in all of Economics and influential 

there since trip length and mode choice became matters of formal analysis (e.g. Morgenstern, 1936). 

 

Distance was used at first as the typical measure of (dis)-Utility or “impedance” in all applications, 

but in transport the formal term (3) known to-day as Utility took hold early between 1965 and 1975, 

as did other refinements such as border effects, all of much later import in trade models. BCT were 

also used in intercity transport models since 1976, long before their first uses in trade models 

(Gaudry et al., 1996; Gaudry, 2004). Among early authors, Kau and Sirman (1979), using intercity 

traffic data for the American State of Georgia, could not reject the multiplicative form of the 

Distance term, contrary to what most other tests have since found, in transport or, later, in trade. 

 

Form and identification. In trade models, Distance is still almost universally employed as a proxy 

for transport cost, and in the logarithmic form of (49), sometimes with dire consequences when 

used as a surrogate for changing transport conditions to compare impedance effects from samples 

pertaining to different moments of time (Buch et al., 2004): in those cases, assumed proportionate 

changes in costs between the samples will be accounted for in the constant but not as desired in the 

coefficient of the distance term. This problem does not arise if a Box-Cox form is used to transform 

the distance term: changes over time in distance elasticities will then be proper surrogates of 

changes in price elasticities. Clearly, gains from moving away from the fixed log-log form go much 

beyond mere fit —some “distance” effects can only be identified if the log-log form is not optimal! 
 

The use of Distance as a proxy for price in time series, say from 1970 until 1995 or 1999 (Ghosh & 

Yamarik, 2004; Fratianni & Kang, 2006) is therefore incorrect in a gravity trade model of log-log 

form, even with period dummy variables: Distance then simply reflects basically constant 

propensities to trade with more or less distant partners, independently from their desired critical role 

as vehicles of changing transport conditions in explaining increased globalization flows. Therefore 

Distance has to be used in addition to transport costs if log-log trade flow explanations are tested 

with time-series data, as some authors correctly do (e.g. Giuliano et al., 2006). And, to the extent 
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 This appendix draws heavily from Section 3.2. of Gaudry (2010). 
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that more sophisticated measures of impedance than distance are in rough proportion to it, any 

proper comparison of the roles of distance and of its more sophisticated replacements, even for the 

same period, also requires that the form not be logarithmic. 

 

But the two issues, that of the measure of impedance and that of its form, should remain distinct 

from each other and from a third issue, that of the OD-type IIA consistency of (49) where the 

explanation of a flow from i to j only involves variables that have i, j, or ij indices. This means that 

markets, say for tourism, are unrelated: the Demand for going to A is independent of the fare to B. 

 

More than one price: the problem of spatial competition. This last issue has also been addressed 

in both transportation and trade models, because OD-type consistency with IIA bothers many. A 

difficulty for all is that there are N
2
 flows, or say (N

2 
–N)/2 if the diagonal is neglected and 

symmetry imposed. Another is that theory further requires both substitutes and complements: so-

called “intervening opportunity” models and their gravity-opportunities generalization (Wills, 1986) 

were a way of introducing some complementarity among destinations perhaps situated on a given 

path. We want to discuss a more parsimonious approach that does not require the inclusion of all 

prices, but only of the relevant ones, and simultaneously allows for complements among flows 

without opening the door to the collinearity forcefully avoided by diagonal slavery imposed in (49). 

 

The first way to include cross-prices, already mentioned above, of course consists in using trip end 

constraints on emissions and attractions, a general and well documented practice in transport 

analysis (e.g. Batten & Boyce, 1986). These constraints simultaneously bring transport conditions 

all-in and force substitution on the pattern: modifying a link will readjust all others in the same 

direction to meet the constraints. But taking theory seriously requires Occam’s razor here because 

not all competing OD pairs matter to explain the flow for a particular one, and also requires 

admitting the possibility of complements, as in classical demand systems. We have argued already 

that this artificial linkage among flows should be rejected, notwithstanding its success in 

Distribution models. But other profligate ways developed for trade analysis should also be avoided. 

 

Other all-in formulations excluding complementarity among flows. A representative example is 

provided by Wei (1996) who introduces an accessibility measure defined as a weighted average of 

distances to all trading partners, in the old fashion of Trip Generation studies devoid of transport 

conditions as explanatory variables and desperately trying to bring the network back in somehow. 

Another example is provided by Anderson and Wincoop (2003), based on Anderson (1979), who 

introduce in the model “multilateral resistance terms in the form of an atheoretic remoteness 

variable related to distance from all bilateral partners”. The latter illumination is an economic 

version (based on expenditures) of the traffic flow constraints just rejected: instead of imposing an 

heroic structure on the residuals, it imposes comparably heroic assumptions about the spatial 

distribution of expenditure shares that never hold in multilateral trade models. 

 

Trade models typically deal simultaneously with final and intermediate goods (not just with final 

goods) and always exclude service flows and balancing financial flows from the analysis. In the 

absence of such offsetting items required by balance of payments constraints, it is natural to find, 

when testing with BCT flow matrices constructed without such accounting constraints: (i) power 

values of Generation terms (whether based on Population or on Income or Output) systematically 

different from those of corresponding Attraction terms; (ii) and both of course different from 1. In 

addition to such practical pound foolishness, these studies simultaneously practice a form of 

theoretical penny wisdom by imposing substitution between the own flow of interest and all others. 

 

Parsimony without the imposition of substitution. A better way to be systematic is to introduce 

just the right number of cross utility terms by an analysis of the spatial correlation among residuals. 

For this, consider explicitly a system where the first two equations reproduce (6-A) and (6-D) and 
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the third adds a mechanism, equation (52), allowing for spatial autocorrelation of the homoscedastic 

residual vt  associated with an observation t to be correlated with many values of the same vector vn , 

for instance in a case of 2 orders:  
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where ~,rl tn  is the typical element of the matrix 
~
Rl , a notation which may be clearer in matrix form: 
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and 
~
Rl is the (row or column) normalized Boolean matrix R. The Boolean matrix expresses an 

hypothesis concerning the presence of correlation, for instance among first neighbour zones at the 

origin and destination of the ij flow, or perhaps (based on other assumptions) among some 

competing or complementary destinations. It is possible to have both substitutes and complements 

in (52), depending on the nature or source of the potential correlation tested by each -1 < l < 1. 

One could for instance imagine that different regions might be competing for tourists (1 > 0) but 

that sub-areas within regions could be simultaneously complementary (2 < 0). As only some OD 

pairs pertaining to non ij flows are selected when spatial autocorrelation is detected in this way, the 

resulting system is one of diagonal dominance because the cross terms have, with -1 < l < 1, a 

smaller role than that of diagonal terms in explaining ij flows, as the reader can readily verify by 

substituting (52) into (51) and the latter into (50).  

 

From diagonal dominance towards a weighted and distributed variant of all-in. But this more 

or less all-in structure is also possible with an extension, with the data deciding on the role of 

distant flows. Assume that one wants to test the influence of neighbours of neighbours, and so on in 

geometrically declining strength, on the relevant flow: in this case, we redefine the 
~
Rl  matrix as: 

 

(54)  ~
( ) , ( ) ,R I R Rl l l l l l   



  1 0 1
1

  
 

where the proximity parameter  l  allows endogenisation of the relative importance of near and 

distant effects considered in the rule of construction of Rl. If  l  equals one, 
~
Rl  is equal to Rl , 

indicating that only the adjacent neighbours have an impact on the correlations among the 

associated residuals assumed in defining the matrix of neighbours 
~
Rl : this corresponds exactly to a 

classical case (Ord, 1975). By contrast, as  l  tends towards zero, the near effect is reduced to a 

minimum in favour of the distant effect. Generally, the  l  weigh the relative importance of near 

and distant effects with a single parameter defining the sharpness or slope of the decline. It is 

therefore possible, with such a distributed lag, to test for and weigh influences beyond those 

assumed by the original 
~
Rl  structure. This is far more realistic than full all-in systems where the 

balancing constraints treat all OD flows in the same way
137

. Results of such tests are found in Table 

                                                 
137

 For details, see Blum et al. (1996): this Boolean fit technique is strongly preferable to using functions, for instance of 

Distance, in the R matrix, a technique that does not yield results invariant to units of measurement of the Distance 

variable, as pointed out in an urban mode choice example (Bolduc et al., 1989, Footnote on page 369). 
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22 where one also finds a demonstration of the effect of replacing Distance by the Utility term in 

Total demand models and of the application of BCT to previously logarithmic specifications.  
 

Table 22. Form, heteroskedasticity and spatial correlation in models of Total passenger transport 

Part I Single-country models for all modes and all trip purposes (domestic flows) 

Gaudry et al., (1994) Canada 1976 (120 observations)
138

 Germany 1985 (286 observations)
139

 

Column 

Case 

Variable 

1  

Log-log 

2 

Log-log 

+1
st
 autoc. 

3 

4 Box-Cox 

+1
st 

autoc. 

4 

Log-log 

5 

Log-log 

+1
st
 autoc. 

6 

4 Box-Cox 

+1
st 

autoc. 

Utility                   elasticity   0,63   0,57   0,69 0,40 0,25 0,24 

                              t-statistic (42,33) (25,27) (24,37) (9,68) (5,59) (5,71) 

Other variables  [...] [...] [...] [...] [...] [...] 

                           Box-Cox     0,00   0,00 -0,08 0,00 0,00 0,41 

Spatial autocorrelation  0,00 0,75 0,86 0,00 0,80 0,73 

Distributed lag  -- 1,00 0,00 -- 0,74 0,49 

Log-likelihood -1318 -1294 -1262 -3057 -3028 -2995 

Degrees of freedom  0 2 6 0 2 6 
 

Part II Joint France (1993-1994) and United Kingdom (1991) model,  

all modes by trip purpose (domestic flows and flows between them or with 

11 other European countries)
140

 

Last (1998) Vacation trips (6540 observations) Private trips (8334 observations) 

Column 

Variable                       Case 

7  

Log-log 

8 

3 Box-Cox 

9 

3 Box-Cox 

10 

Log-log 

11 

2 Box-Cox 

12 

2 Box-Cox 

Distance               elasticity -0,23   -0,20    -0,72  -0,57  

                              t-statistic (-8,71) (-12,95)  (-22,46) (-30,00)  

Utility                   elasticity     0,29      0,52 

                              t-statistic   (12,00)   (26,99 

Other variables  [...] [...] [...] [...] [...] [...] 

                           Box-Cox  0,00 -0,74 0,12 0,00 -0,57 0,31 

Log-likelihood -65407 -65313 -65390 -80804 -79991 -79995 

Degrees of freedom  0 3 3 0 2 2 
 

Part III Business trips 

full set of 5711 observations 

Business trips 

subset of 544 observations Gaudry et al. or Last (1998) 

Column 

Case 

Variable 

13  

Log-log 

14 

3 Box-Cox 

+heterosk. 

15 

3 Box-Cox 

+heterosk. 

16 

Log-log 

17 

8 Box-Cox 

+heterosk. 

18 

As (17) 

+1
st
 autoc. 

Distance               elasticity -0,33    0,20     

                              t-statistic (-8,78) (-11,02)     

Utility                   elasticity    0,22   0,11   0,15   0,16 

                              t-statistic   (12,50)   (4,36)   (5,66)   (5,62) 

Other variables [...] [...] [...] [...] [...] [...] 

                           Box-Cox  0,00 -1,02 0,33 0,00 0,25 0,25 

Spatial autocorrelation    0,18 

Log-likelihood -50846 -50762 -50737 -4890 -4858 -4852 

Degrees of freedom  0 5 5 0 10 11 

                                                 
138

 Results drawn from Table B.2, Columns 1, 3 and 6 of the source paper. The Utility term is constructed from the 4-

mode Box-Cox Logit model summarized as Model 8 in Table 7 above. It is specified in RATE format with distinct 

transformations applied to its four network variables (Price, Speed, Distance, Frequency) but not to its Socio-economic 

variables. 
139

 Results drawn from Table 3, Columns 1, 3 and 5 of the source paper. The utility term is constructed from the 3-mode 

Box-Cox Logit model summarized as Model 9 in Table 7 above. It is specified in RATE format with distinct 

transformations applied to its four network variables (Price, Speed, Distance, Frequency) but not to its Socio-economic 

variables. 
140

 Results drawn from Appendices 2, 3 and 4 of the source paper except for the autocorrelation tests which are drawn 

from Table 11. The Utility term is constructed from the 3-mode Box-Cox Logit models by trip purpose summarized as 

Models 11-13 in Table 7 above. Each is specified with a single transformation common to Fare and In-vehicle time 

network variables, except in the Vacation trip model where a BCT is only applied to the Fare term.  
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The measure and form of the ease of interaction, and the problem of IIA. As this is an 

appendix, we comment only briefly on the results found in Table 22.  

 

First, greyed cases illustrate the impact of replacing Distance by Utility, defined by (3), while 

simultaneously allowing for a BCT instead of a logarithmic specification: we note that the effect on 

elasticities is quite small, no doubt in part because the spatial structure of modal services is closely 

correlated to Distance and because optimal BCT estimates have relatively little impact on 

elasticities. This is even clearer when an examination of the six models presented is made: although 

fit always improves with BCT, the elasticities are never very strongly different from their values in 

log-log specifications no matter how sophisticated the gravity specification might be. But what of 

the specific impact of spatial autocorrelation? 

 

How is the Boolean matrix R defined? First neighbours are here defined for any given flow as all 

those other flows having origins or destinations within 320 km (Columns 2 and 3), or in a range 

between 100 and 180 km (Columns 5 and 6), or between 100 and 300 km (Column 18). Some 

results are obtained without tails distributed in accordance with (54) but, in Columns 3 and 6, such 

significant “long tail”  l  parameters are duly estimated with the algorithm documented in Tran and 

Gaudry (2008c). Although much better fits are then generally obtained than without these additions, 

the log-likelihood gains are greatest in models considering all trip purposes together (Columns 5 

and 6): they are clearly lower when only the business trip purpose (Column 18) is analyzed. This 

meets expectations because the substitution among destinations makes less sense for business trips 

than for trips for other purposes, such as tourism. In all tested cases, flows are substitutes because 

the estimated signs of the l say so, not by assumption.  

 

One senses that gains due to the estimation of forms are smaller or less critical than they were for 

the Modal choice component and that properly accounting for spatial correlation might be more 

promising than current all-in alternatives to introduce substitution, and perhaps eventually 

complementarity, among OD flows. 
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